Skip to content

Commit

Permalink
Merge branch 'k2-fsa:master' into einichi
Browse files Browse the repository at this point in the history
  • Loading branch information
baileyeet authored Jan 27, 2025
2 parents 3eec244 + dd5d7e3 commit efc0536
Show file tree
Hide file tree
Showing 25 changed files with 7,166 additions and 145 deletions.
2 changes: 1 addition & 1 deletion egs/fluent_speech_commands/SLU/shared
25 changes: 18 additions & 7 deletions egs/librispeech/ASR/zipformer/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -1165,23 +1165,34 @@ def save_bad_model(suffix: str = ""):
rank=rank,
)

if batch_idx % 100 == 0 and params.use_autocast:
# If the grad scale was less than 1, try increasing it. The _growth_interval
# of the grad scaler is configurable, but we can't configure it to have different
# behavior depending on the current grad scale.
if params.use_autocast:
cur_grad_scale = scaler._scale.item()

if cur_grad_scale < 8.0 or (cur_grad_scale < 32.0 and batch_idx % 400 == 0):
scaler.update(cur_grad_scale * 2.0)
if cur_grad_scale < 0.01:
if not saved_bad_model:
save_bad_model(suffix="-first-warning")
saved_bad_model = True
if not params.inf_check:
register_inf_check_hooks(model)
logging.warning(f"Grad scale is small: {cur_grad_scale}")

if cur_grad_scale < 1.0e-05:
save_bad_model()
raise_grad_scale_is_too_small_error(cur_grad_scale)

# If the grad scale was less than 1, try increasing it. The _growth_interval
# of the grad scaler is configurable, but we can't configure it to have different
# behavior depending on the current grad scale.
if (
batch_idx % 25 == 0
and cur_grad_scale < 2.0
or batch_idx % 100 == 0
and cur_grad_scale < 8.0
or batch_idx % 400 == 0
and cur_grad_scale < 32.0
):
scaler.update(cur_grad_scale * 2.0)

if batch_idx % params.log_interval == 0:
cur_lr = max(scheduler.get_last_lr())
cur_grad_scale = scaler._scale.item() if params.use_autocast else 1.0
Expand Down Expand Up @@ -1335,7 +1346,7 @@ def run(rank, world_size, args):
clipping_scale=2.0,
)

scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs)
scheduler = Eden(optimizer, params.lr_batches, params.lr_epochs, warmup_start=0.1)

if checkpoints and "optimizer" in checkpoints:
logging.info("Loading optimizer state dict")
Expand Down
5 changes: 3 additions & 2 deletions egs/ljspeech/TTS/matcha/fbank.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ class MatchaFbankConfig:
win_length: int
f_min: float
f_max: float
device: str = "cuda"


@register_extractor
Expand Down Expand Up @@ -46,7 +47,7 @@ def extract(
f"Mismatched sampling rate: extractor expects {expected_sr}, "
f"got {sampling_rate}"
)
samples = torch.from_numpy(samples)
samples = torch.from_numpy(samples).to(self.device)
assert samples.ndim == 2, samples.shape
assert samples.shape[0] == 1, samples.shape

Expand Down Expand Up @@ -81,7 +82,7 @@ def extract(
mel, (0, 0, 0, num_frames - mel.shape[1]), mode="replicate"
).squeeze(0)

return mel.numpy()
return mel.cpu().numpy()

@property
def frame_shift(self) -> Seconds:
Expand Down
66 changes: 65 additions & 1 deletion egs/wenetspeech4tts/TTS/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,5 +68,69 @@ python3 valle/infer.py --output-dir demos_epoch_${epoch}_avg_${avg}_top_p_${top_
--text-extractor pypinyin_initials_finals --top-p ${top_p}
```

# [F5-TTS](https://arxiv.org/abs/2410.06885)

./f5-tts contains the code for training F5-TTS model.

Generated samples and training logs of wenetspeech basic 7k hours data can be found [here](https://huggingface.co/yuekai/f5-tts-small-wenetspeech4tts-basic/tensorboard).

Preparation:

```
bash prepare.sh --stage 5 --stop_stage 6
```
(Note: To compatiable with F5-TTS official checkpoint, we direclty use `vocab.txt` from [here.](https://github.com/SWivid/F5-TTS/blob/129014c5b43f135b0100d49a0c6804dd4cf673e1/data/Emilia_ZH_EN_pinyin/vocab.txt) To generate your own `vocab.txt`, you may refer to [the script](https://github.com/SWivid/F5-TTS/blob/main/src/f5_tts/train/datasets/prepare_emilia.py).)

The training command is given below:

```
# docker: ghcr.io/swivid/f5-tts:main
# pip install k2==1.24.4.dev20241030+cuda12.4.torch2.4.0 -f https://k2-fsa.github.io/k2/cuda.html
# pip install kaldialign lhotse tensorboard bigvganinference sentencepiece
world_size=8
exp_dir=exp/f5-tts-small
python3 f5-tts/train.py --max-duration 700 --filter-min-duration 0.5 --filter-max-duration 20 \
--num-buckets 6 --dtype "bfloat16" --save-every-n 5000 --valid-interval 10000 \
--base-lr 7.5e-5 --warmup-steps 20000 --num-epochs 60 \
--num-decoder-layers 18 --nhead 12 --decoder-dim 768 \
--exp-dir ${exp_dir} --world-size ${world_size}
```

To inference with Icefall Wenetspeech4TTS trained F5-Small, use:
```
huggingface-cli login
huggingface-cli download --local-dir seed_tts_eval yuekai/seed_tts_eval --repo-type dataset
huggingface-cli download --local-dir ${exp_dir} yuekai/f5-tts-small-wenetspeech4tts-basic
huggingface-cli download nvidia/bigvgan_v2_24khz_100band_256x --local-dir bigvgan_v2_24khz_100band_256x
manifest=./seed_tts_eval/seedtts_testset/zh/meta.lst
model_path=f5-tts-small-wenetspeech4tts-basic/epoch-56-avg-14.pt
# skip
python3 f5-tts/generate_averaged_model.py \
--epoch 56 \
--avg 14 --decoder-dim 768 --nhead 12 --num-decoder-layers 18 \
--exp-dir exp/f5_small
accelerate launch f5-tts/infer.py --nfe 16 --model-path $model_path --manifest-file $manifest --output-dir $output_dir --decoder-dim 768 --nhead 12 --num-decoder-layers 18
bash local/compute_wer.sh $output_dir $manifest
```

To inference with official Emilia trained F5-Base, use:
```
huggingface-cli login
huggingface-cli download --local-dir seed_tts_eval yuekai/seed_tts_eval --repo-type dataset
huggingface-cli download --local-dir F5-TTS SWivid/F5-TTS
huggingface-cli download nvidia/bigvgan_v2_24khz_100band_256x --local-dir bigvgan_v2_24khz_100band_256x
manifest=./seed_tts_eval/seedtts_testset/zh/meta.lst
model_path=./F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt
accelerate launch f5-tts/infer.py --nfe 16 --model-path $model_path --manifest-file $manifest --output-dir $output_dir
bash local/compute_wer.sh $output_dir $manifest
```

# Credits
- [vall-e](https://github.com/lifeiteng/vall-e)
- [VALL-E](https://github.com/lifeiteng/vall-e)
- [F5-TTS](https://github.com/SWivid/F5-TTS)
173 changes: 173 additions & 0 deletions egs/wenetspeech4tts/TTS/f5-tts/generate_averaged_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
#!/usr/bin/env python3
#
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang)
# Copyright 2024 Yuekai Zhang
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
(1) use the checkpoint exp_dir/epoch-xxx.pt
python3 bin/generate_averaged_model.py \
--epoch 40 \
--avg 5 \
--exp-dir ${exp_dir}
It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`.
You can later load it by `torch.load("epoch-28-avg-15.pt")`.
"""


import argparse
from pathlib import Path

import k2
import torch
from train import add_model_arguments, get_model

from icefall.checkpoint import (
average_checkpoints,
average_checkpoints_with_averaged_model,
find_checkpoints,
)
from icefall.utils import AttributeDict


def get_parser():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)

parser.add_argument(
"--epoch",
type=int,
default=30,
help="""It specifies the checkpoint to use for decoding.
Note: Epoch counts from 1.
You can specify --avg to use more checkpoints for model averaging.""",
)

parser.add_argument(
"--iter",
type=int,
default=0,
help="""If positive, --epoch is ignored and it
will use the checkpoint exp_dir/checkpoint-iter.pt.
You can specify --avg to use more checkpoints for model averaging.
""",
)

parser.add_argument(
"--avg",
type=int,
default=9,
help="Number of checkpoints to average. Automatically select "
"consecutive checkpoints before the checkpoint specified by "
"'--epoch' and '--iter'",
)

parser.add_argument(
"--exp-dir",
type=str,
default="zipformer/exp",
help="The experiment dir",
)
add_model_arguments(parser)
return parser


@torch.no_grad()
def main():
parser = get_parser()

args = parser.parse_args()
args.exp_dir = Path(args.exp_dir)

params = AttributeDict()
params.update(vars(args))

if params.iter > 0:
params.suffix = f"checkpoint-{params.iter}-avg-{params.avg}"
else:
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}"

print("Script started")

device = torch.device("cpu")
print(f"Device: {device}")

print("About to create model")
filename = f"{params.exp_dir}/epoch-{params.epoch}.pt"
checkpoint = torch.load(filename, map_location=device)
args = AttributeDict(checkpoint)
model = get_model(args)

if params.iter > 0:
# TODO FIX ME
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[
: params.avg + 1
]
if len(filenames) == 0:
raise ValueError(
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}"
)
elif len(filenames) < params.avg + 1:
raise ValueError(
f"Not enough checkpoints ({len(filenames)}) found for"
f" --iter {params.iter}, --avg {params.avg}"
)
filename_start = filenames[-1]
filename_end = filenames[0]
print(
"Calculating the averaged model over iteration checkpoints"
f" from {filename_start} (excluded) to {filename_end}"
)
model.to(device)
model.load_state_dict(
average_checkpoints_with_averaged_model(
filename_start=filename_start,
filename_end=filename_end,
device=device,
)
)
filename = params.exp_dir / f"checkpoint-{params.iter}-avg-{params.avg}.pt"
torch.save({"model": model.state_dict()}, filename)
else:
assert params.avg > 0, params.avg
start = params.epoch - params.avg
assert start >= 1, start
filename_start = f"{params.exp_dir}/epoch-{start}.pt"
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt"
print(
f"Calculating the averaged model over epoch range from "
f"{start} (excluded) to {params.epoch}"
)
filenames = [
f"{params.exp_dir}/epoch-{i}.pt" for i in range(start, params.epoch + 1)
]
model.to(device)
model.load_state_dict(average_checkpoints(filenames, device=device))

filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt"
checkpoint["model"] = model.state_dict()
torch.save(checkpoint, filename)

num_param = sum([p.numel() for p in model.parameters()])
print(f"Number of model parameters: {num_param}")

print("Done!")


if __name__ == "__main__":
main()
Loading

0 comments on commit efc0536

Please sign in to comment.