-
Notifications
You must be signed in to change notification settings - Fork 309
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'k2-fsa:master' into einichi
- Loading branch information
Showing
25 changed files
with
7,166 additions
and
145 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
../../../icefall/shared/ | ||
../../../icefall/shared |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
173 changes: 173 additions & 0 deletions
173
egs/wenetspeech4tts/TTS/f5-tts/generate_averaged_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
#!/usr/bin/env python3 | ||
# | ||
# Copyright 2021-2022 Xiaomi Corporation (Author: Yifan Yang) | ||
# Copyright 2024 Yuekai Zhang | ||
# | ||
# See ../../../../LICENSE for clarification regarding multiple authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
Usage: | ||
(1) use the checkpoint exp_dir/epoch-xxx.pt | ||
python3 bin/generate_averaged_model.py \ | ||
--epoch 40 \ | ||
--avg 5 \ | ||
--exp-dir ${exp_dir} | ||
It will generate a file `epoch-28-avg-15.pt` in the given `exp_dir`. | ||
You can later load it by `torch.load("epoch-28-avg-15.pt")`. | ||
""" | ||
|
||
|
||
import argparse | ||
from pathlib import Path | ||
|
||
import k2 | ||
import torch | ||
from train import add_model_arguments, get_model | ||
|
||
from icefall.checkpoint import ( | ||
average_checkpoints, | ||
average_checkpoints_with_averaged_model, | ||
find_checkpoints, | ||
) | ||
from icefall.utils import AttributeDict | ||
|
||
|
||
def get_parser(): | ||
parser = argparse.ArgumentParser( | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter | ||
) | ||
|
||
parser.add_argument( | ||
"--epoch", | ||
type=int, | ||
default=30, | ||
help="""It specifies the checkpoint to use for decoding. | ||
Note: Epoch counts from 1. | ||
You can specify --avg to use more checkpoints for model averaging.""", | ||
) | ||
|
||
parser.add_argument( | ||
"--iter", | ||
type=int, | ||
default=0, | ||
help="""If positive, --epoch is ignored and it | ||
will use the checkpoint exp_dir/checkpoint-iter.pt. | ||
You can specify --avg to use more checkpoints for model averaging. | ||
""", | ||
) | ||
|
||
parser.add_argument( | ||
"--avg", | ||
type=int, | ||
default=9, | ||
help="Number of checkpoints to average. Automatically select " | ||
"consecutive checkpoints before the checkpoint specified by " | ||
"'--epoch' and '--iter'", | ||
) | ||
|
||
parser.add_argument( | ||
"--exp-dir", | ||
type=str, | ||
default="zipformer/exp", | ||
help="The experiment dir", | ||
) | ||
add_model_arguments(parser) | ||
return parser | ||
|
||
|
||
@torch.no_grad() | ||
def main(): | ||
parser = get_parser() | ||
|
||
args = parser.parse_args() | ||
args.exp_dir = Path(args.exp_dir) | ||
|
||
params = AttributeDict() | ||
params.update(vars(args)) | ||
|
||
if params.iter > 0: | ||
params.suffix = f"checkpoint-{params.iter}-avg-{params.avg}" | ||
else: | ||
params.suffix = f"epoch-{params.epoch}-avg-{params.avg}" | ||
|
||
print("Script started") | ||
|
||
device = torch.device("cpu") | ||
print(f"Device: {device}") | ||
|
||
print("About to create model") | ||
filename = f"{params.exp_dir}/epoch-{params.epoch}.pt" | ||
checkpoint = torch.load(filename, map_location=device) | ||
args = AttributeDict(checkpoint) | ||
model = get_model(args) | ||
|
||
if params.iter > 0: | ||
# TODO FIX ME | ||
filenames = find_checkpoints(params.exp_dir, iteration=-params.iter)[ | ||
: params.avg + 1 | ||
] | ||
if len(filenames) == 0: | ||
raise ValueError( | ||
f"No checkpoints found for --iter {params.iter}, --avg {params.avg}" | ||
) | ||
elif len(filenames) < params.avg + 1: | ||
raise ValueError( | ||
f"Not enough checkpoints ({len(filenames)}) found for" | ||
f" --iter {params.iter}, --avg {params.avg}" | ||
) | ||
filename_start = filenames[-1] | ||
filename_end = filenames[0] | ||
print( | ||
"Calculating the averaged model over iteration checkpoints" | ||
f" from {filename_start} (excluded) to {filename_end}" | ||
) | ||
model.to(device) | ||
model.load_state_dict( | ||
average_checkpoints_with_averaged_model( | ||
filename_start=filename_start, | ||
filename_end=filename_end, | ||
device=device, | ||
) | ||
) | ||
filename = params.exp_dir / f"checkpoint-{params.iter}-avg-{params.avg}.pt" | ||
torch.save({"model": model.state_dict()}, filename) | ||
else: | ||
assert params.avg > 0, params.avg | ||
start = params.epoch - params.avg | ||
assert start >= 1, start | ||
filename_start = f"{params.exp_dir}/epoch-{start}.pt" | ||
filename_end = f"{params.exp_dir}/epoch-{params.epoch}.pt" | ||
print( | ||
f"Calculating the averaged model over epoch range from " | ||
f"{start} (excluded) to {params.epoch}" | ||
) | ||
filenames = [ | ||
f"{params.exp_dir}/epoch-{i}.pt" for i in range(start, params.epoch + 1) | ||
] | ||
model.to(device) | ||
model.load_state_dict(average_checkpoints(filenames, device=device)) | ||
|
||
filename = params.exp_dir / f"epoch-{params.epoch}-avg-{params.avg}.pt" | ||
checkpoint["model"] = model.state_dict() | ||
torch.save(checkpoint, filename) | ||
|
||
num_param = sum([p.numel() for p in model.parameters()]) | ||
print(f"Number of model parameters: {num_param}") | ||
|
||
print("Done!") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.