turkish-zeroshot-distilbert

This model is a fine-tuned version of dbmdz/distilbert-base-turkish-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7510
  • Accuracy: 0.7201
  • F1: 0.7207
  • Precision: 0.7290
  • Recall: 0.7201

Usage

# Use a pipeline as a high-level helper

pipe = pipeline(
    "zero-shot-classification",
    model="kaixkhazaki/turkish-zeroshot-distilbert",
    tokenizer="kaixkhazaki/turkish-zeroshot-distilbert",
    device=0 if torch.cuda.is_available() else -1  # Use GPU if available
)

#Enter your text and possible candidates of classification
sequence = "Bu laptopun pil ömrü ne kadar dayanıyor?"
candidate_labels = ["ürün özellikleri", "soru", "bilgi talebi", "laptop", "teknik destek"]

pipe(
    sequence,
    candidate_labels,
)

>>
{'sequence': 'Bu laptopun pil ömrü ne kadar dayanıyor?',
'labels': ['ürün özellikleri', 'laptop', 'soru', 'teknik destek', 'bilgi talebi'],
'scores': [0.4050311744213104, 0.1970272809267044, 0.1365433931350708, 0.13210774958133698, 0.1292904019355774]}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.0957 0.0326 200 1.0956 0.3506 0.2447 0.3575 0.3506
1.0092 0.0652 400 0.9754 0.5305 0.5296 0.5476 0.5305
0.9338 0.0978 600 0.8756 0.6080 0.6078 0.6098 0.6080
0.8987 0.1304 800 0.8632 0.6112 0.6107 0.6133 0.6112
0.9019 0.1630 1000 0.8275 0.6289 0.6291 0.6299 0.6289
0.8854 0.1956 1200 0.8219 0.6185 0.6184 0.6439 0.6185
0.8877 0.2282 1400 0.8108 0.6265 0.6249 0.6474 0.6265
0.8653 0.2608 1600 0.8147 0.6317 0.6320 0.6346 0.6317
0.8465 0.2934 1800 0.8109 0.6277 0.6269 0.6556 0.6277
0.8205 0.3259 2000 0.7946 0.6430 0.6423 0.6480 0.6430
0.8584 0.3585 2200 0.7998 0.6438 0.6414 0.6592 0.6438
0.8393 0.3911 2400 0.7971 0.6534 0.6536 0.6719 0.6534
0.8136 0.4237 2600 0.7695 0.6566 0.6562 0.6688 0.6566
0.8113 0.4563 2800 0.7614 0.6743 0.6739 0.6756 0.6743
0.8291 0.4889 3000 0.7589 0.6695 0.6704 0.6756 0.6695
0.8274 0.5215 3200 0.7591 0.6699 0.6697 0.6916 0.6699
0.8165 0.5541 3400 0.7379 0.6791 0.6795 0.6828 0.6791
0.7897 0.5867 3600 0.7467 0.6731 0.6734 0.6800 0.6731
0.79 0.6193 3800 0.7473 0.6679 0.6676 0.6804 0.6679
0.8108 0.6519 4000 0.7380 0.6687 0.6696 0.6786 0.6687
0.797 0.6845 4200 0.7429 0.6783 0.6791 0.6889 0.6783
0.7893 0.7171 4400 0.7405 0.6743 0.6747 0.6777 0.6743
0.7653 0.7497 4600 0.7551 0.6711 0.6708 0.6789 0.6711
0.772 0.7823 4800 0.7270 0.6859 0.6861 0.6941 0.6859
0.7686 0.8149 5000 0.7253 0.6819 0.6833 0.6909 0.6819
0.7431 0.8475 5200 0.7386 0.6731 0.6743 0.6926 0.6731
0.7968 0.8801 5400 0.7130 0.6936 0.6943 0.6978 0.6936
0.7584 0.9126 5600 0.7129 0.6960 0.6957 0.6973 0.6960
0.7629 0.9452 5800 0.7141 0.6827 0.6841 0.6983 0.6827
0.7477 0.9778 6000 0.7044 0.6920 0.6930 0.7029 0.6920
0.7043 1.0104 6200 0.7362 0.6880 0.6875 0.6996 0.6880
0.6868 1.0430 6400 0.7056 0.6972 0.6975 0.6999 0.6972
0.7048 1.0756 6600 0.7104 0.6896 0.6907 0.7016 0.6896
0.6965 1.1082 6800 0.7140 0.6988 0.6990 0.7021 0.6988
0.7043 1.1408 7000 0.7084 0.7028 0.7029 0.7109 0.7028
0.7111 1.1734 7200 0.6998 0.7008 0.7014 0.7066 0.7008
0.6994 1.2060 7400 0.7147 0.6964 0.6962 0.7043 0.6964
0.6992 1.2386 7600 0.6962 0.7028 0.7038 0.7129 0.7028
0.7161 1.2712 7800 0.7002 0.6964 0.6967 0.7039 0.6964
0.6935 1.3038 8000 0.7046 0.6972 0.6978 0.7079 0.6972
0.6858 1.3364 8200 0.7066 0.6996 0.7005 0.7144 0.6996
0.706 1.3690 8400 0.6956 0.7044 0.7053 0.7160 0.7044
0.7072 1.4016 8600 0.7158 0.6956 0.6953 0.7114 0.6956
0.6896 1.4342 8800 0.7090 0.6948 0.6952 0.7083 0.6948
0.6891 1.4668 9000 0.6936 0.6964 0.6977 0.7059 0.6964
0.6577 1.4993 9200 0.6926 0.7060 0.7072 0.7143 0.7060
0.6961 1.5319 9400 0.6792 0.7108 0.7106 0.7113 0.7108
0.6826 1.5645 9600 0.6843 0.7060 0.7066 0.7088 0.7060
0.695 1.5971 9800 0.6956 0.6896 0.6899 0.7013 0.6896
0.6904 1.6297 10000 0.7056 0.6948 0.6956 0.7030 0.6948
0.6982 1.6623 10200 0.6865 0.6988 0.6997 0.7041 0.6988
0.6723 1.6949 10400 0.7029 0.6932 0.6941 0.7105 0.6932
0.6658 1.7275 10600 0.6882 0.7060 0.7071 0.7122 0.7060
0.6929 1.7601 10800 0.6915 0.7028 0.7035 0.7139 0.7028
0.6742 1.7927 11000 0.6908 0.7044 0.7050 0.7171 0.7044
0.694 1.8253 11200 0.6960 0.7020 0.7021 0.7132 0.7020
0.6839 1.8579 11400 0.6894 0.7060 0.7069 0.7191 0.7060
0.682 1.8905 11600 0.6930 0.7020 0.7030 0.7161 0.7020
0.6806 1.9231 11800 0.6800 0.7112 0.7117 0.7182 0.7112
0.6936 1.9557 12000 0.6718 0.7076 0.7080 0.7143 0.7076
0.6917 1.9883 12200 0.6877 0.6972 0.6979 0.7088 0.6972
0.5941 2.0209 12400 0.6877 0.7161 0.7159 0.7168 0.7161
0.5729 2.0535 12600 0.7059 0.7120 0.7128 0.7165 0.7120
0.5849 2.0860 12800 0.7126 0.7084 0.7099 0.7181 0.7084
0.5937 2.1186 13000 0.6982 0.7137 0.7149 0.7220 0.7137
0.5975 2.1512 13200 0.7067 0.7048 0.7056 0.7143 0.7048
0.5877 2.1838 13400 0.7041 0.7088 0.7096 0.7124 0.7088
0.5801 2.2164 13600 0.7021 0.7185 0.7197 0.7249 0.7185
0.5897 2.2490 13800 0.7370 0.7012 0.7020 0.7160 0.7012
0.5986 2.2816 14000 0.6885 0.7173 0.7175 0.7211 0.7173
0.5702 2.3142 14200 0.6967 0.7201 0.7212 0.7251 0.7201
0.5885 2.3468 14400 0.6928 0.7084 0.7094 0.7173 0.7084
0.5955 2.3794 14600 0.6889 0.7165 0.7175 0.7222 0.7165
0.5981 2.4120 14800 0.6862 0.7193 0.7198 0.7258 0.7193
0.5974 2.4446 15000 0.6951 0.7165 0.7174 0.7244 0.7165
0.6057 2.4772 15200 0.6984 0.7108 0.7115 0.7199 0.7108
0.5939 2.5098 15400 0.7005 0.7169 0.7180 0.7248 0.7169
0.6026 2.5424 15600 0.7110 0.7120 0.7130 0.7213 0.7120
0.5794 2.5750 15800 0.7021 0.7213 0.7221 0.7285 0.7213
0.5743 2.6076 16000 0.6961 0.7157 0.7161 0.7222 0.7157
0.5987 2.6402 16200 0.6909 0.7201 0.7211 0.7258 0.7201
0.5741 2.6728 16400 0.7035 0.7084 0.7090 0.7163 0.7084
0.5628 2.7053 16600 0.7137 0.7068 0.7073 0.7210 0.7068
0.5632 2.7379 16800 0.7102 0.7084 0.7094 0.7270 0.7084
0.6049 2.7705 17000 0.6855 0.7181 0.7189 0.7274 0.7181
0.578 2.8031 17200 0.6946 0.7165 0.7172 0.7245 0.7165
0.5795 2.8357 17400 0.6919 0.7161 0.7169 0.7222 0.7161
0.5507 2.8683 17600 0.6898 0.7253 0.7260 0.7292 0.7253
0.5936 2.9009 17800 0.6892 0.7189 0.7197 0.7257 0.7189
0.5964 2.9335 18000 0.6826 0.7173 0.7182 0.7245 0.7173
0.5805 2.9661 18200 0.7005 0.7112 0.7124 0.7238 0.7112
0.6106 2.9987 18400 0.6886 0.7229 0.7236 0.7299 0.7229
0.4978 3.0313 18600 0.7325 0.7213 0.7218 0.7268 0.7213
0.5034 3.0639 18800 0.7586 0.7149 0.7158 0.7237 0.7149
0.4796 3.0965 19000 0.7483 0.7237 0.7242 0.7300 0.7237
0.5027 3.1291 19200 0.7195 0.7273 0.7282 0.7320 0.7273
0.4718 3.1617 19400 0.7576 0.7233 0.7239 0.7324 0.7233
0.4806 3.1943 19600 0.7427 0.7213 0.7219 0.7267 0.7213
0.4892 3.2269 19800 0.7586 0.7217 0.7222 0.7276 0.7217
0.4934 3.2595 20000 0.7593 0.7120 0.7128 0.7241 0.7120
0.4931 3.2920 20200 0.7459 0.7221 0.7228 0.7299 0.7221
0.4987 3.3246 20400 0.7301 0.7161 0.7168 0.7216 0.7161
0.4929 3.3572 20600 0.7499 0.7185 0.7193 0.7262 0.7185
0.4718 3.3898 20800 0.7398 0.7221 0.7228 0.7268 0.7221
0.4957 3.4224 21000 0.7343 0.7189 0.7197 0.7247 0.7189
0.496 3.4550 21200 0.7395 0.7141 0.7150 0.7231 0.7141
0.5113 3.4876 21400 0.7237 0.7213 0.7224 0.7287 0.7213
0.5009 3.5202 21600 0.7393 0.7205 0.7216 0.7276 0.7205
0.4793 3.5528 21800 0.7462 0.7217 0.7226 0.7278 0.7217
0.5007 3.5854 22000 0.7393 0.7229 0.7236 0.7284 0.7229
0.4836 3.6180 22200 0.7483 0.7173 0.7185 0.7275 0.7173
0.4885 3.6506 22400 0.7446 0.7201 0.7208 0.7285 0.7201
0.494 3.6832 22600 0.7368 0.7225 0.7235 0.7311 0.7225
0.476 3.7158 22800 0.7500 0.7165 0.7176 0.7278 0.7165
0.4787 3.7484 23000 0.7408 0.7201 0.7211 0.7281 0.7201
0.4983 3.7810 23200 0.7351 0.7181 0.7190 0.7265 0.7181
0.5081 3.8136 23400 0.7407 0.7197 0.7206 0.7287 0.7197
0.5209 3.8462 23600 0.7542 0.7137 0.7147 0.7248 0.7137
0.4924 3.8787 23800 0.7576 0.7169 0.7177 0.7280 0.7169
0.4939 3.9113 24000 0.7571 0.7161 0.7171 0.7258 0.7161
0.4792 3.9439 24200 0.7510 0.7201 0.7207 0.7290 0.7201

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.4.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
68.1M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kaixkhazaki/turkish-zeroshot-distilbert

Finetuned
(11)
this model