turkish-zeroshot-distilbert
This model is a fine-tuned version of dbmdz/distilbert-base-turkish-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7510
- Accuracy: 0.7201
- F1: 0.7207
- Precision: 0.7290
- Recall: 0.7201
Usage
# Use a pipeline as a high-level helper
pipe = pipeline(
"zero-shot-classification",
model="kaixkhazaki/turkish-zeroshot-distilbert",
tokenizer="kaixkhazaki/turkish-zeroshot-distilbert",
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
)
#Enter your text and possible candidates of classification
sequence = "Bu laptopun pil ömrü ne kadar dayanıyor?"
candidate_labels = ["ürün özellikleri", "soru", "bilgi talebi", "laptop", "teknik destek"]
pipe(
sequence,
candidate_labels,
)
>>
{'sequence': 'Bu laptopun pil ömrü ne kadar dayanıyor?',
'labels': ['ürün özellikleri', 'laptop', 'soru', 'teknik destek', 'bilgi talebi'],
'scores': [0.4050311744213104, 0.1970272809267044, 0.1365433931350708, 0.13210774958133698, 0.1292904019355774]}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
1.0957 | 0.0326 | 200 | 1.0956 | 0.3506 | 0.2447 | 0.3575 | 0.3506 |
1.0092 | 0.0652 | 400 | 0.9754 | 0.5305 | 0.5296 | 0.5476 | 0.5305 |
0.9338 | 0.0978 | 600 | 0.8756 | 0.6080 | 0.6078 | 0.6098 | 0.6080 |
0.8987 | 0.1304 | 800 | 0.8632 | 0.6112 | 0.6107 | 0.6133 | 0.6112 |
0.9019 | 0.1630 | 1000 | 0.8275 | 0.6289 | 0.6291 | 0.6299 | 0.6289 |
0.8854 | 0.1956 | 1200 | 0.8219 | 0.6185 | 0.6184 | 0.6439 | 0.6185 |
0.8877 | 0.2282 | 1400 | 0.8108 | 0.6265 | 0.6249 | 0.6474 | 0.6265 |
0.8653 | 0.2608 | 1600 | 0.8147 | 0.6317 | 0.6320 | 0.6346 | 0.6317 |
0.8465 | 0.2934 | 1800 | 0.8109 | 0.6277 | 0.6269 | 0.6556 | 0.6277 |
0.8205 | 0.3259 | 2000 | 0.7946 | 0.6430 | 0.6423 | 0.6480 | 0.6430 |
0.8584 | 0.3585 | 2200 | 0.7998 | 0.6438 | 0.6414 | 0.6592 | 0.6438 |
0.8393 | 0.3911 | 2400 | 0.7971 | 0.6534 | 0.6536 | 0.6719 | 0.6534 |
0.8136 | 0.4237 | 2600 | 0.7695 | 0.6566 | 0.6562 | 0.6688 | 0.6566 |
0.8113 | 0.4563 | 2800 | 0.7614 | 0.6743 | 0.6739 | 0.6756 | 0.6743 |
0.8291 | 0.4889 | 3000 | 0.7589 | 0.6695 | 0.6704 | 0.6756 | 0.6695 |
0.8274 | 0.5215 | 3200 | 0.7591 | 0.6699 | 0.6697 | 0.6916 | 0.6699 |
0.8165 | 0.5541 | 3400 | 0.7379 | 0.6791 | 0.6795 | 0.6828 | 0.6791 |
0.7897 | 0.5867 | 3600 | 0.7467 | 0.6731 | 0.6734 | 0.6800 | 0.6731 |
0.79 | 0.6193 | 3800 | 0.7473 | 0.6679 | 0.6676 | 0.6804 | 0.6679 |
0.8108 | 0.6519 | 4000 | 0.7380 | 0.6687 | 0.6696 | 0.6786 | 0.6687 |
0.797 | 0.6845 | 4200 | 0.7429 | 0.6783 | 0.6791 | 0.6889 | 0.6783 |
0.7893 | 0.7171 | 4400 | 0.7405 | 0.6743 | 0.6747 | 0.6777 | 0.6743 |
0.7653 | 0.7497 | 4600 | 0.7551 | 0.6711 | 0.6708 | 0.6789 | 0.6711 |
0.772 | 0.7823 | 4800 | 0.7270 | 0.6859 | 0.6861 | 0.6941 | 0.6859 |
0.7686 | 0.8149 | 5000 | 0.7253 | 0.6819 | 0.6833 | 0.6909 | 0.6819 |
0.7431 | 0.8475 | 5200 | 0.7386 | 0.6731 | 0.6743 | 0.6926 | 0.6731 |
0.7968 | 0.8801 | 5400 | 0.7130 | 0.6936 | 0.6943 | 0.6978 | 0.6936 |
0.7584 | 0.9126 | 5600 | 0.7129 | 0.6960 | 0.6957 | 0.6973 | 0.6960 |
0.7629 | 0.9452 | 5800 | 0.7141 | 0.6827 | 0.6841 | 0.6983 | 0.6827 |
0.7477 | 0.9778 | 6000 | 0.7044 | 0.6920 | 0.6930 | 0.7029 | 0.6920 |
0.7043 | 1.0104 | 6200 | 0.7362 | 0.6880 | 0.6875 | 0.6996 | 0.6880 |
0.6868 | 1.0430 | 6400 | 0.7056 | 0.6972 | 0.6975 | 0.6999 | 0.6972 |
0.7048 | 1.0756 | 6600 | 0.7104 | 0.6896 | 0.6907 | 0.7016 | 0.6896 |
0.6965 | 1.1082 | 6800 | 0.7140 | 0.6988 | 0.6990 | 0.7021 | 0.6988 |
0.7043 | 1.1408 | 7000 | 0.7084 | 0.7028 | 0.7029 | 0.7109 | 0.7028 |
0.7111 | 1.1734 | 7200 | 0.6998 | 0.7008 | 0.7014 | 0.7066 | 0.7008 |
0.6994 | 1.2060 | 7400 | 0.7147 | 0.6964 | 0.6962 | 0.7043 | 0.6964 |
0.6992 | 1.2386 | 7600 | 0.6962 | 0.7028 | 0.7038 | 0.7129 | 0.7028 |
0.7161 | 1.2712 | 7800 | 0.7002 | 0.6964 | 0.6967 | 0.7039 | 0.6964 |
0.6935 | 1.3038 | 8000 | 0.7046 | 0.6972 | 0.6978 | 0.7079 | 0.6972 |
0.6858 | 1.3364 | 8200 | 0.7066 | 0.6996 | 0.7005 | 0.7144 | 0.6996 |
0.706 | 1.3690 | 8400 | 0.6956 | 0.7044 | 0.7053 | 0.7160 | 0.7044 |
0.7072 | 1.4016 | 8600 | 0.7158 | 0.6956 | 0.6953 | 0.7114 | 0.6956 |
0.6896 | 1.4342 | 8800 | 0.7090 | 0.6948 | 0.6952 | 0.7083 | 0.6948 |
0.6891 | 1.4668 | 9000 | 0.6936 | 0.6964 | 0.6977 | 0.7059 | 0.6964 |
0.6577 | 1.4993 | 9200 | 0.6926 | 0.7060 | 0.7072 | 0.7143 | 0.7060 |
0.6961 | 1.5319 | 9400 | 0.6792 | 0.7108 | 0.7106 | 0.7113 | 0.7108 |
0.6826 | 1.5645 | 9600 | 0.6843 | 0.7060 | 0.7066 | 0.7088 | 0.7060 |
0.695 | 1.5971 | 9800 | 0.6956 | 0.6896 | 0.6899 | 0.7013 | 0.6896 |
0.6904 | 1.6297 | 10000 | 0.7056 | 0.6948 | 0.6956 | 0.7030 | 0.6948 |
0.6982 | 1.6623 | 10200 | 0.6865 | 0.6988 | 0.6997 | 0.7041 | 0.6988 |
0.6723 | 1.6949 | 10400 | 0.7029 | 0.6932 | 0.6941 | 0.7105 | 0.6932 |
0.6658 | 1.7275 | 10600 | 0.6882 | 0.7060 | 0.7071 | 0.7122 | 0.7060 |
0.6929 | 1.7601 | 10800 | 0.6915 | 0.7028 | 0.7035 | 0.7139 | 0.7028 |
0.6742 | 1.7927 | 11000 | 0.6908 | 0.7044 | 0.7050 | 0.7171 | 0.7044 |
0.694 | 1.8253 | 11200 | 0.6960 | 0.7020 | 0.7021 | 0.7132 | 0.7020 |
0.6839 | 1.8579 | 11400 | 0.6894 | 0.7060 | 0.7069 | 0.7191 | 0.7060 |
0.682 | 1.8905 | 11600 | 0.6930 | 0.7020 | 0.7030 | 0.7161 | 0.7020 |
0.6806 | 1.9231 | 11800 | 0.6800 | 0.7112 | 0.7117 | 0.7182 | 0.7112 |
0.6936 | 1.9557 | 12000 | 0.6718 | 0.7076 | 0.7080 | 0.7143 | 0.7076 |
0.6917 | 1.9883 | 12200 | 0.6877 | 0.6972 | 0.6979 | 0.7088 | 0.6972 |
0.5941 | 2.0209 | 12400 | 0.6877 | 0.7161 | 0.7159 | 0.7168 | 0.7161 |
0.5729 | 2.0535 | 12600 | 0.7059 | 0.7120 | 0.7128 | 0.7165 | 0.7120 |
0.5849 | 2.0860 | 12800 | 0.7126 | 0.7084 | 0.7099 | 0.7181 | 0.7084 |
0.5937 | 2.1186 | 13000 | 0.6982 | 0.7137 | 0.7149 | 0.7220 | 0.7137 |
0.5975 | 2.1512 | 13200 | 0.7067 | 0.7048 | 0.7056 | 0.7143 | 0.7048 |
0.5877 | 2.1838 | 13400 | 0.7041 | 0.7088 | 0.7096 | 0.7124 | 0.7088 |
0.5801 | 2.2164 | 13600 | 0.7021 | 0.7185 | 0.7197 | 0.7249 | 0.7185 |
0.5897 | 2.2490 | 13800 | 0.7370 | 0.7012 | 0.7020 | 0.7160 | 0.7012 |
0.5986 | 2.2816 | 14000 | 0.6885 | 0.7173 | 0.7175 | 0.7211 | 0.7173 |
0.5702 | 2.3142 | 14200 | 0.6967 | 0.7201 | 0.7212 | 0.7251 | 0.7201 |
0.5885 | 2.3468 | 14400 | 0.6928 | 0.7084 | 0.7094 | 0.7173 | 0.7084 |
0.5955 | 2.3794 | 14600 | 0.6889 | 0.7165 | 0.7175 | 0.7222 | 0.7165 |
0.5981 | 2.4120 | 14800 | 0.6862 | 0.7193 | 0.7198 | 0.7258 | 0.7193 |
0.5974 | 2.4446 | 15000 | 0.6951 | 0.7165 | 0.7174 | 0.7244 | 0.7165 |
0.6057 | 2.4772 | 15200 | 0.6984 | 0.7108 | 0.7115 | 0.7199 | 0.7108 |
0.5939 | 2.5098 | 15400 | 0.7005 | 0.7169 | 0.7180 | 0.7248 | 0.7169 |
0.6026 | 2.5424 | 15600 | 0.7110 | 0.7120 | 0.7130 | 0.7213 | 0.7120 |
0.5794 | 2.5750 | 15800 | 0.7021 | 0.7213 | 0.7221 | 0.7285 | 0.7213 |
0.5743 | 2.6076 | 16000 | 0.6961 | 0.7157 | 0.7161 | 0.7222 | 0.7157 |
0.5987 | 2.6402 | 16200 | 0.6909 | 0.7201 | 0.7211 | 0.7258 | 0.7201 |
0.5741 | 2.6728 | 16400 | 0.7035 | 0.7084 | 0.7090 | 0.7163 | 0.7084 |
0.5628 | 2.7053 | 16600 | 0.7137 | 0.7068 | 0.7073 | 0.7210 | 0.7068 |
0.5632 | 2.7379 | 16800 | 0.7102 | 0.7084 | 0.7094 | 0.7270 | 0.7084 |
0.6049 | 2.7705 | 17000 | 0.6855 | 0.7181 | 0.7189 | 0.7274 | 0.7181 |
0.578 | 2.8031 | 17200 | 0.6946 | 0.7165 | 0.7172 | 0.7245 | 0.7165 |
0.5795 | 2.8357 | 17400 | 0.6919 | 0.7161 | 0.7169 | 0.7222 | 0.7161 |
0.5507 | 2.8683 | 17600 | 0.6898 | 0.7253 | 0.7260 | 0.7292 | 0.7253 |
0.5936 | 2.9009 | 17800 | 0.6892 | 0.7189 | 0.7197 | 0.7257 | 0.7189 |
0.5964 | 2.9335 | 18000 | 0.6826 | 0.7173 | 0.7182 | 0.7245 | 0.7173 |
0.5805 | 2.9661 | 18200 | 0.7005 | 0.7112 | 0.7124 | 0.7238 | 0.7112 |
0.6106 | 2.9987 | 18400 | 0.6886 | 0.7229 | 0.7236 | 0.7299 | 0.7229 |
0.4978 | 3.0313 | 18600 | 0.7325 | 0.7213 | 0.7218 | 0.7268 | 0.7213 |
0.5034 | 3.0639 | 18800 | 0.7586 | 0.7149 | 0.7158 | 0.7237 | 0.7149 |
0.4796 | 3.0965 | 19000 | 0.7483 | 0.7237 | 0.7242 | 0.7300 | 0.7237 |
0.5027 | 3.1291 | 19200 | 0.7195 | 0.7273 | 0.7282 | 0.7320 | 0.7273 |
0.4718 | 3.1617 | 19400 | 0.7576 | 0.7233 | 0.7239 | 0.7324 | 0.7233 |
0.4806 | 3.1943 | 19600 | 0.7427 | 0.7213 | 0.7219 | 0.7267 | 0.7213 |
0.4892 | 3.2269 | 19800 | 0.7586 | 0.7217 | 0.7222 | 0.7276 | 0.7217 |
0.4934 | 3.2595 | 20000 | 0.7593 | 0.7120 | 0.7128 | 0.7241 | 0.7120 |
0.4931 | 3.2920 | 20200 | 0.7459 | 0.7221 | 0.7228 | 0.7299 | 0.7221 |
0.4987 | 3.3246 | 20400 | 0.7301 | 0.7161 | 0.7168 | 0.7216 | 0.7161 |
0.4929 | 3.3572 | 20600 | 0.7499 | 0.7185 | 0.7193 | 0.7262 | 0.7185 |
0.4718 | 3.3898 | 20800 | 0.7398 | 0.7221 | 0.7228 | 0.7268 | 0.7221 |
0.4957 | 3.4224 | 21000 | 0.7343 | 0.7189 | 0.7197 | 0.7247 | 0.7189 |
0.496 | 3.4550 | 21200 | 0.7395 | 0.7141 | 0.7150 | 0.7231 | 0.7141 |
0.5113 | 3.4876 | 21400 | 0.7237 | 0.7213 | 0.7224 | 0.7287 | 0.7213 |
0.5009 | 3.5202 | 21600 | 0.7393 | 0.7205 | 0.7216 | 0.7276 | 0.7205 |
0.4793 | 3.5528 | 21800 | 0.7462 | 0.7217 | 0.7226 | 0.7278 | 0.7217 |
0.5007 | 3.5854 | 22000 | 0.7393 | 0.7229 | 0.7236 | 0.7284 | 0.7229 |
0.4836 | 3.6180 | 22200 | 0.7483 | 0.7173 | 0.7185 | 0.7275 | 0.7173 |
0.4885 | 3.6506 | 22400 | 0.7446 | 0.7201 | 0.7208 | 0.7285 | 0.7201 |
0.494 | 3.6832 | 22600 | 0.7368 | 0.7225 | 0.7235 | 0.7311 | 0.7225 |
0.476 | 3.7158 | 22800 | 0.7500 | 0.7165 | 0.7176 | 0.7278 | 0.7165 |
0.4787 | 3.7484 | 23000 | 0.7408 | 0.7201 | 0.7211 | 0.7281 | 0.7201 |
0.4983 | 3.7810 | 23200 | 0.7351 | 0.7181 | 0.7190 | 0.7265 | 0.7181 |
0.5081 | 3.8136 | 23400 | 0.7407 | 0.7197 | 0.7206 | 0.7287 | 0.7197 |
0.5209 | 3.8462 | 23600 | 0.7542 | 0.7137 | 0.7147 | 0.7248 | 0.7137 |
0.4924 | 3.8787 | 23800 | 0.7576 | 0.7169 | 0.7177 | 0.7280 | 0.7169 |
0.4939 | 3.9113 | 24000 | 0.7571 | 0.7161 | 0.7171 | 0.7258 | 0.7161 |
0.4792 | 3.9439 | 24200 | 0.7510 | 0.7201 | 0.7207 | 0.7290 | 0.7201 |
Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kaixkhazaki/turkish-zeroshot-distilbert
Base model
dbmdz/distilbert-base-turkish-cased