TF-Keras
pointnet
segmentation
3d
image

Point cloud segmentation with PointNet

This repo contains an Implementation of a PointNet-based model for segmenting point clouds..

Full credits to Soumik Rakshit, Sayak Paul

Background Information

A "point cloud" is an important type of data structure for storing geometric shape data. Due to its irregular format, it's often transformed into regular 3D voxel grids or collections of images before being used in deep learning applications, a step which makes the data unnecessarily large. The PointNet family of models solves this problem by directly consuming point clouds, respecting the permutation-invariance property of the point data. The PointNet family of models provides a simple, unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing.

In this example, we demonstrate the implementation of the PointNet architecture for shape segmentation.

References

Training Dataset

This model was trained on the ShapeNet dataset.

The ShapeNet dataset is an ongoing effort to establish a richly-annotated, large-scale dataset of 3D shapes. ShapeNetCore is a subset of the full ShapeNet dataset with clean single 3D models and manually verified category and alignment annotations. It covers 55 common object categories, with about 51,300 unique 3D models.

Prediction example result

Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Space using keras-io/pointnet_segmentation 1