kishizaki-sci/phi-4-AWQ-4bit-EN-JP

model information

phi-4AutoAWQで4bit 量子化したモデル。量子化の際のキャリブレーションデータに日本語と英語を含むデータを使用。
A model of phi-4 quantized to 4 bits using AutoAWQ. Calibration data containing Japanese and English was used during the quantization process.

usage

transformers

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

tokenizer = AutoTokenizer.from_pretrained("kishizaki-sci/phi-4-AWQ-4bit-EN-JP")
model = AutoModelForCausalLM.from_pretrained("kishizaki-sci/phi-4-AWQ-4bit-EN-JP")
model.to("cuda")

chat = [
    {"role": "system", "content": "あなたは日本語で応答するAIチャットボットです。ユーザをサポートしてください。"},
    {"role": "user", "content": "plotly.graph_objectsを使って散布図を作るサンプルコードを書いてください。"}
]
prompt = tokenizer.apply_chat_template(
    chat,
    tokenize=False,
    add_generation_prompt=True
)
inputs = tokenizer(prompt, return_tensors="pt")
inputs = inputs.to("cuda")
streamer = TextStreamer(tokenizer)

output = model.generate(**inputs, streamer=streamer, max_new_tokens=1024)

このコードはA100インスタンスのGoogle Colab でも動かせます。
This code can also run on Google Colab with an A100 instance.

vLLM

from vllm import LLM, SamplingParams

llm = LLM(
    model="kishizaki-sci/phi-4-AWQ-4bit-EN-JP",
    tensor_parallel_size=1,
    gpu_memory_utilization=0.97,
    quantization="awq"
)
tokenizer = llm.get_tokenizer()

messages = [
    {"role": "system", "content": "あなたは日本語で応答するAIチャットボットです。ユーザをサポートしてください。"},
    {"role": "user", "content": "plotly.graph_objectsを使って散布図を作るサンプルコードを書いてください。"},
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.9,
    max_tokens=1024
)

outputs = llm.generate(prompt, sampling_params)
print(outputs[0].outputs[0].text)

Google Colab A100インスタンスでの実行はこちらのnotebookをご覧ください。
Please refer to this google colab notebook for execution on the A100 instance.

calibration data

以下のデータセットから512個のデータ,プロンプトを抽出。1つのデータのトークン数は最大350制限。
Extract 512 data points and prompts from the following dataset. The maximum token limit per data point is 350.

License

MIT Licenseを適用する。
The MIT License is applied.

Downloads last month
18
Safetensors
Model size
2.85B params
Tensor type
I32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kishizaki-sci/phi-4-AWQ-4bit-EN-JP

Base model

microsoft/phi-4
Quantized
(46)
this model