|
| 1 | +#include <bits/stdc++.h> |
| 2 | +using namespace std; |
| 3 | +typedef long long ll; |
| 4 | + |
| 5 | +/* |
| 6 | +
|
| 7 | +# Problem: Next Prime (https://cses.fi/problemset/task/3396/) |
| 8 | +
|
| 9 | +# Prerequisite: |
| 10 | +-> Prime Numbers, Divisors, Sieve |
| 11 | +
|
| 12 | +# Main Idea: |
| 13 | +-> There is not a large gap between prime numbers. The number of prime numbers from 1 to n is given by π(n) - prime counting function. |
| 14 | +-> And π(n) = n / log(n), since there are many prime number and their count increases as we go further. So we can start from n + 1 |
| 15 | + and keep going until we found the prime number(p > n). |
| 16 | +-> For checking prime number we can check all numbers from 1 to sqrt(n) or we can use sieve of Erastosthenes to get all the prime numbers from 1 to 1e6 |
| 17 | + and since n <= 1e12, so we can efficiently check if the number is prime or not just by checking the divisibility with these primes from 1 to 1e6. |
| 18 | +
|
| 19 | +- is_prime_1 : This function is implemented using square root solution |
| 20 | +- precompute : it computes all the primes from 1 to 1e6 and return the prime vector |
| 21 | +- is_prime_2 : Uses sieve to check if the number is prime or not. |
| 22 | +
|
| 23 | +Complexties: |
| 24 | +If we use square root method - |
| 25 | + 1. Time Complexity: O(t * sqrt(n) * k) |
| 26 | + 2. Space Commplexity: O(1) |
| 27 | +If we use sieve method: |
| 28 | + 1. Time Complexity: O(N(log(log(N))) + t * (N / log(N) * k)), where N = 1e6 |
| 29 | + 2. Space Commplexity: O(N / log(N)) |
| 30 | +
|
| 31 | +And approximately k can be upto 600 for numbers <= 1e6 |
| 32 | +*/ |
| 33 | + |
| 34 | +/// Checks if the given number is prime or not. Uses sqaure root method to check. |
| 35 | +/// TC: O(sqrt(n)) |
| 36 | +/// @return true if number is prime or false |
| 37 | +bool is_prime_1(ll number) { |
| 38 | + if (number == 2 || number == 3) { |
| 39 | + return true; |
| 40 | + } |
| 41 | + if (number < 2 || number % 2 == 0 || number % 6 % 4 != 1) { |
| 42 | + return false; |
| 43 | + } |
| 44 | + |
| 45 | + for (ll i = 3; 1LL * i * i <= number; i += 2) { |
| 46 | + if (number % i == 0) { |
| 47 | + return false; |
| 48 | + } |
| 49 | + } |
| 50 | + return true; |
| 51 | +} |
| 52 | + |
| 53 | +/// Function to generate prime numbers. |
| 54 | +/// @return All prime numbers from 1 to 1e6 |
| 55 | +vector<ll> precompute() { |
| 56 | + const int N = 1e6 + 1; |
| 57 | + vector<ll> primes; |
| 58 | + bool is_prime[N]; |
| 59 | + fill(is_prime, is_prime + N, true); |
| 60 | + is_prime[0] = is_prime[1] = false; |
| 61 | + |
| 62 | + for (int i = 2; i < N; i++) { |
| 63 | + if (is_prime[i]) { |
| 64 | + primes.push_back((ll) i); |
| 65 | + for (ll j = 1LL * i * i; j < N; j += i) { |
| 66 | + is_prime[j] = false; |
| 67 | + } |
| 68 | + } |
| 69 | + } |
| 70 | + return primes; |
| 71 | +} |
| 72 | + |
| 73 | +/// Checks if the number is prime or not. Uses generated primes to check the primality. |
| 74 | +/// @return true if number is prime or false |
| 75 | +bool is_prime_2(ll number, vector<ll>& primes) { |
| 76 | + if (number == 2 || number == 3) { |
| 77 | + return true; |
| 78 | + } |
| 79 | + if (number < 2 || number % 2 == 0 || number % 6 % 4 != 1) { |
| 80 | + return false; |
| 81 | + } |
| 82 | + |
| 83 | + for (ll prime: primes) { |
| 84 | + if (prime == number) { |
| 85 | + return true; |
| 86 | + } |
| 87 | + if (number % prime == 0) { |
| 88 | + return false; |
| 89 | + } |
| 90 | + } |
| 91 | + return true; |
| 92 | +} |
| 93 | + |
| 94 | +/// Function to solve one testcase |
| 95 | +void solve() { |
| 96 | + ll n; |
| 97 | + cin >> n; |
| 98 | + |
| 99 | + ll next_prime = n + 1; |
| 100 | + while (!is_prime_1(next_prime)) { |
| 101 | + next_prime++; |
| 102 | + } |
| 103 | + cout << next_prime << "\n"; |
| 104 | +} |
| 105 | + |
| 106 | +int main() { |
| 107 | + ios::sync_with_stdio(false); |
| 108 | + cin.tie(nullptr); |
| 109 | + |
| 110 | + int t; |
| 111 | + cin >> t; |
| 112 | + |
| 113 | + while (t--) { |
| 114 | + solve(); |
| 115 | + } |
| 116 | +} |
0 commit comments