-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #108 from czgdp1807/lnn_02
Ported ``integration_tests/test_pkg_lnn_02.py`` from LPython
- Loading branch information
Showing
2 changed files
with
124 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
#include "lnn/regression/regression_main.hpp" | ||
#include "lnn/utils/utils_main.hpp" | ||
#include "lpdraw/draw.hpp" | ||
|
||
#define assert_(cond) if( !(cond) ) { \ | ||
exit(2); \ | ||
} \ | ||
|
||
double compute_decision_boundary(struct Perceptron& p, double x) { | ||
double bias = p.weights[1]; | ||
double slope = p.weights[0]; | ||
double intercept = bias; | ||
return slope * x + intercept; | ||
} | ||
|
||
void plot_graph(struct Perceptron& p, std::vector<std::vector<double>>& input_vectors, std::vector<double>& outputs) { | ||
const int32_t Width = 500; // x-axis limits [0, 499] | ||
const int32_t Height = 500; // # y-axis limits [0, 499] | ||
xt::xtensor<int32_t, 2> Screen = xt::empty<int32_t>({Height, Width}); | ||
Clear(Height, Width, Screen); | ||
|
||
double x1 = 1.0; | ||
double y1 = compute_decision_boundary(p, x1); | ||
double x2 = -1.0; | ||
double y2 = compute_decision_boundary(p, x2); | ||
|
||
// center the graph using the following offset | ||
double scale_offset = Width / 4; | ||
double shift_offset = Width / 2; | ||
x1 *= scale_offset; | ||
y1 *= scale_offset; | ||
x2 *= scale_offset; | ||
y2 *= scale_offset; | ||
|
||
// print (x1, y1, x2, y2) | ||
Line(Height, Width, Screen, int32_t(x1 + shift_offset), int32_t(y1 + shift_offset), int32_t(x2 + shift_offset), int32_t(y2 + shift_offset)); | ||
|
||
int32_t i; | ||
int32_t point_size = 5; | ||
for( i = 0; i < input_vectors.size(); i++ ) { | ||
input_vectors[i][0] *= scale_offset; | ||
input_vectors[i][0] += shift_offset; | ||
outputs[i] *= scale_offset; | ||
outputs[i] += shift_offset; | ||
|
||
Circle(Height, Width, Screen, int32_t(input_vectors[i][0]), int32_t(outputs[i]), double(point_size)); | ||
} | ||
|
||
Display(Height, Width, Screen); | ||
} | ||
|
||
void main0() { | ||
struct Perceptron p; | ||
p.no_of_inputs = 0; | ||
p.weights = {0.0}; | ||
p.learn_rate = 0.0; | ||
p.iterations_limit = 0.0; | ||
p.err_limit = 0.0; | ||
p.err = 0.0; | ||
p.epochs_cnt = 0; | ||
|
||
init_perceptron(p, 1, 0.0005, 10000, 1e-16); | ||
|
||
std::vector<std::vector<double>> input_vectors = {{1.1}, {1.3}, {1.5}, {2.0}, {2.2}, {2.9}, {3.0}, {3.2}, | ||
{3.2}, {3.7}, {3.9}, {4.0}, {4.0}, {4.1}, {4.5}, {4.9}, | ||
{5.1}, {5.3}, {5.9}, {6.0}, {6.8}, {7.1}, {7.9}, {8.2}, | ||
{8.7}, {9.0}, {9.5}, {9.6}, {10.3}, {10.5}, {11.2}, {11.5}, | ||
{12.3}, {12.9}, {13.5}}; | ||
std::vector<double> outputs = {39343.0, 46205.0, 37731.0, 43525.0, 39891.0, 56642.0, 60150.0, 54445.0, 64445.0, | ||
57189.0, 63218.0, 55794.0, 56957.0, 57081.0, 61111.0, 67938.0, 66029.0, 83088.0, | ||
81363.0, 93940.0, 91738.0, 98273.0, 101302.0, 113812.0, 109431.0, 105582.0, 116969.0, | ||
112635.0, 122391.0, 121872.0, 127345.0, 126756.0, 128765.0, 135675.0, 139465.0}; | ||
|
||
normalize_input_vectors(input_vectors); | ||
normalize_output_vector(outputs); | ||
|
||
train_dataset(p, input_vectors, outputs); | ||
print_perceptron(p); | ||
|
||
assert_(abs(p.weights[0] - (1.0640975812232145)) <= 1e-12); | ||
assert_(abs(p.weights[1] - (0.0786977829749839)) <= 1e-12); | ||
assert_(abs(p.err - (0.4735308448814293)) <= 1e-12); | ||
assert_(p.epochs_cnt == 4515); | ||
|
||
plot_graph(p, input_vectors, outputs); | ||
} | ||
|
||
void main1() { | ||
struct Perceptron p; | ||
p.no_of_inputs = 0; | ||
p.weights = {0.0}; | ||
p.learn_rate = 0.0; | ||
p.iterations_limit = 0.0; | ||
p.err_limit = 0.0; | ||
p.err = 0.0; | ||
p.epochs_cnt = 0; | ||
init_perceptron(p, 1, 0.0005, 10000, 1e-16); | ||
|
||
std::vector<std::vector<double>> input_vectors = {{1.0}, {3.0}, {7.0}}; | ||
std::vector<double> outputs = {8.0, 4.0, -2.0}; | ||
|
||
normalize_input_vectors(input_vectors); | ||
normalize_output_vector(outputs); | ||
|
||
train_dataset(p, input_vectors, outputs); | ||
print_perceptron(p); | ||
|
||
assert_(abs(p.weights[0] - (-0.9856542200697508)) <= 1e-12); | ||
assert_(abs(p.weights[1] - (-0.0428446744717655)) <= 1e-12); | ||
assert_(abs(p.err - 0.011428579012311327) <= 1e-12); | ||
assert_(p.epochs_cnt == 10000); | ||
|
||
plot_graph(p, input_vectors, outputs); | ||
} | ||
|
||
int main() { | ||
|
||
main0(); | ||
main1(); | ||
|
||
return 0; | ||
|
||
} |