Skip to content

liux0614/yolo_nano

Folders and files

NameName
Last commit message
Last commit date

Latest commit

28e5a5e · Dec 4, 2019

History

41 Commits
Nov 20, 2019
Nov 5, 2019
Nov 16, 2019
Nov 20, 2019
Nov 20, 2019
Nov 15, 2019
Dec 4, 2019
Nov 22, 2019
Nov 16, 2019
Nov 16, 2019
Nov 16, 2019
Nov 16, 2019
Nov 16, 2019

Repository files navigation

Introduction

YOLO nano is from this paper.

TODO

Since I'm too busy at the end of the semester, I will continue working on this project after my exams.

  • Finish a draft version of implementation
  • Add README
  • Add checkpoint support
  • Add COCO dataset support (Code still needs cleaning. I'm working on it.)
  • Add multi scale and horizontal flip transforms
  • Reconstruct the code of visualizer
  • Add val and test
  • Add VOC support
  • Test accuracy

Installation

git clone https://github.com/liux0614/yolo_nano
pip3 install -r requirements.txt

COCO

Project Structure

root/
  results/
  datasets/
    coco/
      images/
        train/
        val/
      annotation/
        instances_train2017.json
        instances_val2017.json

Train

To use COCO dataset loader, pycocotools should be installed via the following command.

pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"

To train on COCO dataset:

python3 main.py --dataset_path datasets/coco/images --annotation_path datasets/coco/annotation/instances_train2017.json 
                --dataset coco --lr 0.0001 --conf_thres 0.8 --nms_thres 0.5

About

Unofficial implementation of yolo nano

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages