Skip to content

[mlir][linalg] Use ub.poison in linalg vectorizer instead of 0 for some transfer ops #146544

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 6 additions & 10 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1183,19 +1183,15 @@ vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
auto srcRank = extractOp.getTensor().getType().getRank();
SmallVector<bool> inBounds(dstRank, true);

// Get the value to pad transfer reads with 0.
Value padding =
arith::getZeroConstant(rewriter, loc, resultType.getElementType());

// 2a. Handle scalar broadcast access.
if (memAccessKind == VectorMemoryAccessKind::ScalarBroadcast) {
MLIRContext *ctx = rewriter.getContext();
SmallVector<AffineExpr> exprs(dstRank, getAffineConstantExpr(0, ctx));
auto permutationMap = AffineMap::get(srcRank, 0, exprs, ctx);

auto transferReadOp = rewriter.create<vector::TransferReadOp>(
loc, resultType, extractOp.getTensor(), transferReadIdxs, padding,
permutationMap, inBounds);
loc, resultType, extractOp.getTensor(), transferReadIdxs,
/*padding=*/std::nullopt, permutationMap, inBounds);

// Mask this broadcasting xfer_read here rather than relying on the generic
// path (the generic path assumes identity masking map, which wouldn't be
Expand Down Expand Up @@ -1231,8 +1227,8 @@ vectorizeTensorExtract(RewriterBase &rewriter, VectorizationState &state,
}

auto transferReadOp = rewriter.create<vector::TransferReadOp>(
loc, resultType, extractOp.getTensor(), transferReadIdxs, padding,
permutationMap, inBounds);
loc, resultType, extractOp.getTensor(), transferReadIdxs,
/*padding=*/std::nullopt, permutationMap, inBounds);

LDBG("Vectorised as contiguous load: " << extractOp);
return VectorizationHookResult{VectorizationHookStatus::NewOp,
Expand Down Expand Up @@ -1444,7 +1440,7 @@ vectorizeAsLinalgGeneric(RewriterBase &rewriter, VectorizationState &state,

Operation *read = rewriter.create<vector::TransferReadOp>(
loc, readType, opOperand->get(), indices,
/*padding=*/arith::getZeroConstant(rewriter, loc, elemType), readMap);
/*padding=*/std::nullopt, readMap);
read = state.maskOperation(rewriter, read, linalgOp, indexingMap);
Value readValue = read->getResult(0);

Expand Down Expand Up @@ -2646,7 +2642,7 @@ LogicalResult mlir::linalg::vectorizeCopy(RewriterBase &rewriter,

Value readValue = rewriter.create<vector::TransferReadOp>(
loc, readType, copyOp.getSource(), indices,
/*padding=*/arith::getZeroConstant(rewriter, loc, srcElementType),
/*padding=*/std::nullopt,
rewriter.getMultiDimIdentityMap(srcType.getRank()));
if (cast<VectorType>(readValue.getType()).getRank() == 0) {
readValue =
Expand Down
39 changes: 20 additions & 19 deletions mlir/test/Dialect/Linalg/vectorization/extract-with-patterns.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@ func.func @vectorize_nd_tensor_extract_transfer_read_basic(
// CHECK-SAME: %[[ARG1:.*]]: tensor<1x1x3xf32>

// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[CST:.+]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[PV:.+]] = ub.poison : f32

// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]], %[[CST]] {in_bounds = [true, true, true]} : tensor<3x3x3xf32>, vector<1x1x3xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]][%[[C0]], %[[C0]], %[[C0]]], %[[PV]] {in_bounds = [true, true, true]} : tensor<3x3x3xf32>, vector<1x1x3xf32>
// CHECK: vector.transfer_write %[[READ]], %[[ARG1]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32>

// -----
Expand Down Expand Up @@ -64,12 +64,12 @@ func.func @vectorize_nd_tensor_extract_transfer_read_complex(%6: tensor<45x80x16
// CHECK-SAME: %[[ARG5:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {

// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[PV:.*]] = ub.poison : f32
// CHECK-DAG: %[[C79:.*]] = arith.constant 79 : index
// CHECK: %[[ADD1:.*]] = arith.addi %[[ARG1]], %[[ARG2]] : index
// CHECK: %[[ADD2:.*]] = arith.addi %[[ARG3]], %[[ARG4]] : index

// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]]{{\[}}%[[ADD1]], %[[C79]], %[[ADD2]]], %[[CST]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]]{{\[}}%[[ADD1]], %[[C79]], %[[ADD2]]], %[[PV]] {in_bounds = [true, true]} : tensor<45x80x16xf32>, vector<1x4xf32>
// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[ARG5]]{{\[}}%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[WRITE]] : tensor<1x4xf32>
// CHECK: }
Expand Down Expand Up @@ -97,11 +97,11 @@ func.func @vectorize_nd_tensor_extract_with_affine_apply_contiguous(%6: tensor<8
// CHECK-SAME: %[[ARG1:.*]]: index,
// CHECK-SAME: %[[ARG2:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {

// CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[PV:.*]] = ub.poison : f32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C79:.*]] = arith.constant 79 : index

// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]]{{\[}}%[[C79]], %[[ARG1]]], %[[CST]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[ARG0]]{{\[}}%[[C79]], %[[ARG1]]], %[[PV]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
// CHECK: %[[WRITE:.*]] = vector.transfer_write %[[READ]], %[[ARG2]]{{\[}}%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[WRITE]] : tensor<1x4xf32>
// CHECK: }
Expand Down Expand Up @@ -164,9 +164,9 @@ func.func @vectorize_nd_tensor_extract_with_maxsi_contiguous(%arg0: tensor<80x16
// CHECK-SAME: %[[VAL_1:.*]]: tensor<1x4xf32>) -> tensor<1x4xf32> {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C16:.*]] = arith.constant 16 : index
// CHECK-DAG: %[[CST:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[PV:.*]] = ub.poison : f32

// CHECK: %[[VAL_8:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[C16]], %[[C0]]], %[[CST]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
// CHECK: %[[VAL_8:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[C16]], %[[C0]]], %[[PV]] {in_bounds = [true, true]} : tensor<80x16xf32>, vector<1x4xf32>
// CHECK: %[[VAL_9:.*]] = vector.transfer_write %[[VAL_8]], %[[VAL_1]]{{\[}}%[[C0]], %[[C0]]] {in_bounds = [true, true]} : vector<1x4xf32>, tensor<1x4xf32>
// CHECK: return %[[VAL_9]] : tensor<1x4xf32>
// CHECK: }
Expand Down Expand Up @@ -229,12 +229,12 @@ func.func @vectorize_nd_tensor_extract_index_from_tensor(%arg0: tensor<3x3xf32>,
// CHECK-SAME: %[[ARG3:.*]]: tensor<4x7x2xf32>
// CHECK-SAME: %[[ARG4:.*]]: tensor<4x7x3x2xf32>
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C0_i32:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[PV:.*]] = ub.poison : i32
// CHECK-DAG: %[[CST:.*]] = arith.constant dense<3> : vector<7x2x4x3xindex>
// CHECK-DAG: %[[CST_1:.*]] = arith.constant dense<true> : vector<4x7x3x2xi1>
// CHECK-DAG: %[[PASSTHRU:.*]] = arith.constant dense<0.000000e+00> : vector<4x7x3x2xf32>
// CHECK: %[[V0:.*]] = vector.transfer_read %[[ARG1]][%[[C0]], %[[C0]]], %[[C0_i32]] {in_bounds = [true, true]} : tensor<4x3xi32>, vector<4x3xi32>
// CHECK: %[[V1:.*]] = vector.transfer_read %[[ARG2]][%[[C0]], %[[C0]]], %[[C0_i32]] {in_bounds = [true, true]} : tensor<4x3xi32>, vector<4x3xi32>
// CHECK: %[[V0:.*]] = vector.transfer_read %[[ARG1]][%[[C0]], %[[C0]]], %[[PV]] {in_bounds = [true, true]} : tensor<4x3xi32>, vector<4x3xi32>
// CHECK: %[[V1:.*]] = vector.transfer_read %[[ARG2]][%[[C0]], %[[C0]]], %[[PV]] {in_bounds = [true, true]} : tensor<4x3xi32>, vector<4x3xi32>
// CHECK: %[[CAST:.*]] = arith.index_cast %[[V0]] : vector<4x3xi32> to vector<4x3xindex>
// CHECK: %[[B1:.*]] = vector.broadcast %[[CAST]] : vector<4x3xindex> to vector<7x2x4x3xindex>
// CHECK: %[[CAST_1:.*]] = arith.index_cast %[[V1]] : vector<4x3xi32> to vector<4x3xindex>
Expand Down Expand Up @@ -382,7 +382,7 @@ func.func @vectorize_nd_tensor_extract_contiguous_and_gather(%arg0: tensor<6xf32
// CHECK-SAME: %[[VAL_0:.*]]: tensor<6xf32>
// CHECK-SAME: %[[VAL_1:.*]]: tensor<5xi32>
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[VAL_3:.*]] = ub.poison : i32
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant dense<0> : vector<5xindex>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant dense<5> : vector<5xindex>
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant dense<true> : vector<5xi1>
Expand Down Expand Up @@ -480,13 +480,14 @@ func.func @vectorize_nd_tensor_extract_block_arg(%arg0: tensor<5x6xf32>, %arg1:
// CHECK-LABEL: func.func @vectorize_nd_tensor_extract_block_arg(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<5x6xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: tensor<5xindex>) -> tensor<5xf32> {
// CHECK-DAG: %[[PAD:.*]] = ub.poison : index
// CHECK-DAG: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[VAL_3:.*]] = arith.constant dense<[0, 1, 2, 3, 4]> : vector<5xindex>
// CHECK-DAG: %[[VAL_4:.*]] = arith.constant dense<true> : vector<5xi1>
// CHECK-DAG: %[[VAL_5:.*]] = arith.constant dense<0.000000e+00> : vector<5xf32>
// CHECK-DAG: %[[VAL_6:.*]] = arith.constant dense<6> : vector<5xindex>
// CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<5xf32>
// CHECK: %[[VAL_8:.*]] = vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_2]]], %[[VAL_2]] {in_bounds = [true]} : tensor<5xindex>, vector<5xindex>
// CHECK: %[[VAL_8:.*]] = vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_2]]], %[[PAD]] {in_bounds = [true]} : tensor<5xindex>, vector<5xindex>
// CHECK: %[[VAL_9:.*]] = arith.muli %[[VAL_8]], %[[VAL_6]] : vector<5xindex>
// CHECK: %[[VAL_10:.*]] = arith.addi %[[VAL_9]], %[[VAL_3]] : vector<5xindex>
// CHECK: %[[VAL_11:.*]] = vector.gather %[[VAL_0]]{{\[}}%[[VAL_2]], %[[VAL_2]]] {{\[}}%[[VAL_10]]], %[[VAL_4]], %[[VAL_5]] : tensor<5x6xf32>, vector<5xindex>, vector<5xi1>, vector<5xf32> into vector<5xf32>
Expand Down Expand Up @@ -559,7 +560,7 @@ func.func @vectorize_nd_tensor_extract_scalar_broadcast(%src: tensor<3x3xf32>, %
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index
// CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index
// CHECK-DAG: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[PAD:.*]] = ub.poison : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][%[[C1]], %[[C2]]], %[[PAD]] : tensor<3x3xf32>, vector<f32>
// CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector<f32> to vector<1x1x3xf32>
// CHECK: vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<1x1x3xf32>, tensor<1x1x3xf32>
Expand All @@ -583,7 +584,7 @@ func.func @extract_scalar_from_0d_into_0d(%src: tensor<f32>, %init: tensor<f32>)
// CHECK-LABEL: func.func @extract_scalar_from_0d_into_0d(
// CHECK-SAME: %[[SRC:.*]]: tensor<f32>,
// CHECK-SAME: %[[INIT:.*]]: tensor<f32>) -> tensor<f32> {
// CHECK: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[PAD:.*]] = ub.poison : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: vector.transfer_write %[[READ]], %[[INIT]][] : vector<f32>, tensor<f32>

Expand All @@ -606,7 +607,7 @@ func.func @extract_scalar_from_0d_into_1d(%src: tensor<f32>, %init: tensor<1xf32
// CHECK-SAME: %[[SRC:.*]]: tensor<f32>,
// CHECK-SAME: %[[INIT:.*]]: tensor<1xf32>) -> tensor<1xf32> {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[PAD:.*]] = ub.poison : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector<f32> to vector<1xf32>
// CHECK: vector.transfer_write %[[READ_BCAST]], %[[INIT]][%[[C0]]] {in_bounds = [true]} : vector<1xf32>, tensor<1xf32>
Expand Down Expand Up @@ -654,7 +655,7 @@ func.func @scalar_read_with_broadcast_from_column_tensor(%init: tensor<1x1x4xi32

// CHECK-LABEL: func.func @scalar_read_with_broadcast_from_column_tensor
// CHECK-SAME: %[[INIT:.*]]: tensor<1x1x4xi32>) -> tensor<1x1x4xi32> {
// CHECK-DAG: %[[PAD:.*]] = arith.constant 0 : i32
// CHECK-DAG: %[[PAD:.*]] = ub.poison : i32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[SRC:.*]] = arith.constant dense<{{\[\[}}0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]]> : tensor<15x1xi32>
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]]{{\[}}%[[C0]], %[[C0]]], %[[PAD]] : tensor<15x1xi32>, vector<i32>
Expand Down Expand Up @@ -688,7 +689,7 @@ func.func @vectorize_nd_tensor_extract_transfer_read_basic_column(
// CHECK-SAME: %[[SRC:.*]]: tensor<3x3x3xf32>,
// CHECK-SAME: %[[INIT:.*]]: tensor<3x1x1xf32>)
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CST_0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][%[[C0]], %[[C0]], %[[C0]]], %[[CST_0]] : tensor<3x3x3xf32>, vector<f32>
// CHECK-DAG: %[[PV:.*]] = ub.poison : f32
// CHECK: %[[READ:.*]] = vector.transfer_read %[[SRC]][%[[C0]], %[[C0]], %[[C0]]], %[[PV]] : tensor<3x3x3xf32>, vector<f32>
// CHECK: %[[READ_BCAST:.*]] = vector.broadcast %[[READ]] : vector<f32> to vector<3x1x1xf32>
// CHECK: vector.transfer_write %[[READ_BCAST]], %[[INIT]]{{\[}}%[[C0]], %[[C0]], %[[C0]]] {in_bounds = [true, true, true]} : vector<3x1x1xf32>, tensor<3x1x1xf32>
6 changes: 3 additions & 3 deletions mlir/test/Dialect/Linalg/vectorization/extract.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@ func.func @masked_dynamic_vectorize_nd_tensor_extract_with_affine_apply_gather(%
// CHECK: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_2]], %[[VAL_6]] : tensor<?x?xf32>
// CHECK: %[[VAL_8:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_9:.*]] = ub.poison : f32
// CHECK: %[[VAL_10:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_7]] : vector<1x4xi1>
// CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_10]] { vector.transfer_read %[[VAL_2]]{{\[}}%[[VAL_8]], %[[VAL_8]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<1x4xf32> } : vector<1x4xi1> -> vector<1x4xf32>
// CHECK: %[[VAL_12:.*]] = vector.step : vector<4xindex>
Expand Down Expand Up @@ -356,7 +356,7 @@ func.func @extract_masked_vectorize(%arg0: tensor<?x?xf32>, %arg1: tensor<?x?xf3
// CHECK: %[[VAL_6:.*]] = arith.constant 1 : index
// CHECK: %[[VAL_7:.*]] = tensor.dim %[[VAL_1]], %[[VAL_6]] : tensor<?x?xf32>
// CHECK: %[[VAL_8:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_9:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_9:.*]] = ub.poison : f32
// CHECK: %[[VAL_10:.*]] = vector.create_mask %[[VAL_5]], %[[VAL_7]] : vector<3x3xi1>
// CHECK: %[[VAL_11:.*]] = vector.mask %[[VAL_10]] { vector.transfer_read %[[VAL_1]]{{\[}}%[[VAL_8]], %[[VAL_8]]], %[[VAL_9]] {in_bounds = [true, true]} : tensor<?x?xf32>, vector<3x3xf32> } : vector<3x3xi1> -> vector<3x3xf32>
// CHECK: %[[VAL_12:.*]] = arith.constant dense<true> : vector<3x3xi1>
Expand Down Expand Up @@ -458,7 +458,7 @@ func.func @scalar_broadcast(%init : tensor<1x1x3xi32>, %src: tensor<1x3x2x4xi32>
// CHECK: %[[MASK_RES:.*]] = vector.create_mask %[[C1]], %[[C1_2]], %[[C3]] : vector<1x1x4xi1>

/// Read and broadcast the scalar
// CHECK: %[[PAD:.*]] = arith.constant 0 : i32
// CHECK: %[[PAD:.*]] = ub.poison : i32
// CHECK: %[[MASK_READ:.*]] = vector.constant_mask [1] : vector<1xi1>
// CHECK: %[[READ:.*]] = vector.mask %[[MASK_READ]] {
// CHECK-SAME: vector.transfer_read %[[SRC]]{{\[}}%[[IDX]], %[[IDX]], %[[IDX]], %[[IDX]]], %[[PAD]]
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ module attributes {transform.with_named_sequence} {
// CHECK-SAME: %[[ARG_0:.*]]: tensor<f32>, %[[ARG_1:.*]]: tensor<f32>, %[[ARG_2:.*]]: tensor<f32>)
func.func @generic_0d(%arg0: tensor<f32>, %arg1: tensor<f32>,
%arg2: tensor<f32>) -> tensor<f32> {
// CHECK: %[[PAD:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[PAD:.*]] = ub.poison : f32
// CHECK: %[[READ_0:.*]] = vector.transfer_read %[[ARG_0]][], %[[PAD]] : tensor<f32>, vector<f32>
// CHECK: %[[ARG_0_AS_SCALAR:.*]] = vector.extract %[[READ_0]][] : f32 from vector<f32>
// CHECK: %[[READ_1:.*]] = vector.transfer_read %[[ARG_1]][], %[[PAD]] : tensor<f32>, vector<f32>
Expand Down Expand Up @@ -770,11 +770,11 @@ module attributes {transform.with_named_sequence} {
// CHECK-DAG: #[[$MAP3:.*]] = affine_map<(d0, d1) -> (d1, 0, d0, 0)>
// CHECK: func @generic_vectorize_broadcast_transpose
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[CF:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[V0:.*]] = vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[CF]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP0]]} : memref<4x4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[V1:.*]] = vector.transfer_read %{{.*}}[%[[C0]]], %[[CF]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP1]]} : memref<4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[V2:.*]] = vector.transfer_read %{{.*}}[%[[C0]]], %[[CF]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP2]]} : memref<4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[V3:.*]] = vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[CF]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP3]]} : memref<4x4xf32>, vector<4x4x4x4xf32>
// CHECK-DAG: %[[PV:.*]] = ub.poison : f32
// CHECK: %[[V0:.*]] = vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[PV]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP0]]} : memref<4x4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[V1:.*]] = vector.transfer_read %{{.*}}[%[[C0]]], %[[PV]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP1]]} : memref<4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[V2:.*]] = vector.transfer_read %{{.*}}[%[[C0]]], %[[PV]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP2]]} : memref<4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[V3:.*]] = vector.transfer_read %{{.*}}[%[[C0]], %[[C0]]], %[[PV]] {in_bounds = [true, true, true, true], permutation_map = #[[$MAP3]]} : memref<4x4xf32>, vector<4x4x4x4xf32>
// CHECK: %[[SUB:.*]] = arith.subf %[[V0]], %[[V1]] : vector<4x4x4x4xf32>
// CHECK: %[[ADD0:.*]] = arith.addf %[[V2]], %[[SUB]] : vector<4x4x4x4xf32>
// CHECK: %[[ADD1:.*]] = arith.addf %[[V3]], %[[ADD0]] : vector<4x4x4x4xf32>
Expand Down Expand Up @@ -1702,7 +1702,7 @@ module attributes {transform.with_named_sequence} {

// CHECK-LABEL: func.func @generic_with_reduction_and_broadcast(
// CHECK-SAME: %[[VAL_0:.*]]: tensor<1x12x197x197xf32>) -> tensor<1x12x197x1xf32> {
// CHECK: %[[VAL_1:.*]] = arith.constant 0.000000e+00 : f32
// CHECK: %[[VAL_1:.*]] = ub.poison : f32
// CHECK: %[[VAL_2:.*]] = arith.constant 0 : index
// CHECK: %[[VAL_3:.*]] = tensor.empty() : tensor<1x12x197x1xf32>
// CHECK: %[[VAL_4:.*]] = vector.transfer_read %[[VAL_0]]{{\[}}%[[VAL_2]], %[[VAL_2]], %[[VAL_2]], %[[VAL_2]]], %[[VAL_1]] {in_bounds = [true, true, true, true]} : tensor<1x12x197x197xf32>, vector<1x12x197x197xf32>
Expand Down
Loading
Loading