Skip to content

louspringer/chatbot-llm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Snowflake Cortex Teams Bot

A Microsoft Teams bot integration for Snowflake Cortex, enabling seamless data analytics and collaboration within Teams channels.

Documentation

📚 View the full documentation index for comprehensive guides, references, and examples.

Overview and Purpose

The Snowflake Cortex Teams Bot is designed to bridge the gap between Microsoft Teams collaboration and Snowflake's data analytics capabilities. This integration allows teams to:

  • Query Snowflake data directly from Teams channels
  • Receive automated alerts and insights
  • Share and collaborate on data analytics
  • Manage data access and permissions seamlessly

Directory Structure

.
├── teams-bot/              # Main bot application
│   ├── bot/               # Core bot logic
│   ├── handlers/          # Message and event handlers
│   └── middleware/        # Bot middleware components
├── tools/                 # Development and utility scripts
├── tests/                 # Test suite
├── docs/                  # Documentation
└── ontologies/           # RDF/OWL ontologies for bot knowledge

Setup Instructions

Prerequisites

  • Python 3.8 or higher
  • Conda package manager
  • Microsoft Teams development account
  • Snowflake account with appropriate permissions

Environment Setup

  1. Create the conda environment:
conda env create -f environment.yml
conda activate chatbot-llm
  1. Configure environment variables:
cp .env.example .env
# Edit .env with your credentials
  1. Register the bot in Microsoft Teams:

Development Setup

  1. Install development dependencies:
conda install -n chatbot-llm --file requirements-dev.txt
  1. Set up pre-commit hooks:
pre-commit install

Development Workflow

  1. Branch Management

    • Main branch: main - production-ready code
    • Development branch: develop - integration branch
    • Feature branches: feature/* - new features
    • Hotfix branches: hotfix/* - urgent fixes
  2. Development Process

    • Create a feature branch from develop
    • Implement changes with tests
    • Submit PR for review
    • Merge to develop after approval
  3. Testing

# Run unit tests
pytest tests/unit

# Run integration tests
pytest tests/integration

# Run all tests with coverage
pytest --cov=teams-bot tests/

Contribution Guidelines

  1. Code Style

    • Follow PEP 8 guidelines
    • Use type hints
    • Document functions and classes
    • Keep functions focused and small
  2. Pull Request Process

    • Create descriptive PR titles
    • Fill out the PR template
    • Include test coverage
    • Link related issues
  3. Commit Messages

    • Use conventional commits format
    • Reference issues where applicable
    • Keep commits focused and atomic
  4. Documentation

    • Update README for major changes
    • Document new features
    • Keep API documentation current

Ontology Integration

The bot uses RDF/OWL ontologies for knowledge representation:

@prefix bot: <./chatbot#> .
@prefix snow: <./snowflake#> .
@prefix teams: <./teams#> .

bot:TeamsBot a owl:Class ;
    rdfs:label "Teams Bot" ;
    rdfs:comment "Main bot application class" .

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support and questions:

  • Create an issue in the repository
  • Contact the development team
  • Check the documentation

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published