Class | 10 | 100 | 1000 |
---|---|---|---|
T-Shirt/Top | ![]() |
![]() |
![]() |
Trouser | ![]() |
![]() |
![]() |
Pullover | ![]() |
![]() |
![]() |
Class | 10 | 100 | 1000 |
---|---|---|---|
'1' | ![]() |
![]() |
![]() |
'2' | ![]() |
![]() |
![]() |
'3' | ![]() |
![]() |
![]() |
Class | 10 | 100 | 1000 |
---|---|---|---|
'B' | ![]() |
![]() |
![]() |
'C' | ![]() |
![]() |
![]() |
'D' | ![]() |
![]() |
![]() |
Source | Target | 10 | 100 | 1000 |
---|---|---|---|---|
'1' | '7' | ![]() |
![]() |
![]() |
'3' | '8' | ![]() |
![]() |
![]() |
'6' | '9' | ![]() |
![]() |
![]() |
Source | Target | 10 | 100 | 1000 |
---|---|---|---|---|
Sneaker | Ankle Boot | ![]() |
![]() |
![]() |
Sneaker | Bag | ![]() |
![]() |
![]() |
Source | Target | 10 | 100 | 1000 |
---|---|---|---|---|
Sneaker | Bag | ![]() |
![]() |
![]() |
Train Dataset | 10 | 100 | 1000 |
---|---|---|---|
MNIST | ![]() |
![]() |
![]() |
FashionMNIST | ![]() |
![]() |
![]() |
notMNIST | ![]() |
![]() |
![]() |
Dataset | Ex1 | Ex2 | Ex3 |
---|---|---|---|
MNIST | ![]() |
![]() |
![]() |
FashionMNIST | ![]() |
![]() |
![]() |
CIFAR | ![]() |
![]() |
![]() |
Primary Domain | Helper Domain | Ex1 | Ex2 | Ex3 |
---|---|---|---|---|
MNIST | SVHN-BW | ![]() |
![]() |
![]() |
MNIST | USPS | ![]() |
![]() |
![]() |
- Execute the conditional DC-GAN with
python cDCGAN_train.py
. This would create 4 directories withinDCGAN
folderDCGAN/animation
containing gif of generated images after every epochDCGAN/loss
containing loss values for both generator and discriminator vs. epochsDCGAN/plots
containing a png file with generated images after last epochDCGAN/models
containing model file with discriminator and generator weights in pytorch format- Below example with MNIST. [0,1,2] are few shot classes
Dataset | 5000/1000 | 1000/100 |
---|---|---|
MNIST | ![]() |
![]() |
SVHN | ![]() |
![]() |
Dataset | 5000/1000 | 1000/100 |
---|---|---|
MNIST | ![]() |
![]() |
SVHN | ![]() |
![]() |
- TBC
- Execute the Maximum Mean Discrepancy comparison with
python MMD_WD.py
. This would create 1 directory withingDCGAN
folderDCGAN/mmdValues
containing histograms of average MMD values vs. Classes for a single domain (dataset)
- Execute the MMD comparison with
python MMD_CD.py
. This would create 1 directory withinDCGAN
folderDCGAN/mmdValues
containing histograms of average MMD values vs. Classes for two different domains (datasets)
- Classification of test data with training data being one of the three
- Real data instances from original dataset
- Real data + Data generated by DC-GAN
- Real data + Data generated by DC-GAN using MMD distance as a proxy for training
- Classification using SVF with RBF kernel
- Execute
Evaluate/classify.py
- Primary class is a single class within a domain say MNIST
- Helper class is another fixed class within the same domain
- Results in
Evaluate/MMD
MNIST | F-MNIST | CIFAR | SVHN |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
- Execute
Evaluate/classify_CD.py
- Primary class is a single class within a domain say MNIST
- Helper class is another class in a different helper domain say SVHN
- Results in
Evaulate/crossDomainMMD
MNIST | F-MNIST | CIFAR | SVHN |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
- Execute
Evaluate/classify_all.py
- Primary class is a single class within a domain say MNIST
- Helper class are all the classes except the primary class withing same domain
- Results in
Evaulate/MMDall
MNIST | F-MNIST | CIFAR | SVHN |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
- Execute
Evaluate/classify_all_CD.py
- Primary class is a single class withing a domain say MNIST
- Helper classes are all the classes in a different helper domain say SVHN
- Results in
Evaulate/crossDomainMMDall
MNIST | F-MNIST | CIFAR | SVHN |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
- MNIST
- FashionMNIST dataset
- notMNIST dataset
- GAN Tutorial
- CycleGAN Implementation
- Siamese/Triplet Loss Implementation
- Add classification results for DCGAN with/without MMD
- DCGAN with MMD [ Learning from all classes of same dataset ]
- MMD Comparison [ Cross and within domain ]
- Batches with max and min MMD
- Update .py files [presently in .ipynb format]
- Sample generation in differnet directory from classificaiton