Skip to content

martin6336/DSGSum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DSGSum

** This code is for paper [Augmented Abstractive Summarization With Document-Level Semantic Graph]

Results on CNN/DailyMail:

Models ROUGE-1 ROUGE-2 ROUGE-L
Abstractive
TransformerAbs 40.21 17.76 37.09
BertSumAbs 41.72 19.39 38.76
DSGSum 41.96 19.29 38.98

Python version: This code is in Python3.6

Package Requirements: torch==1.1.0 pytorch_transformers tensorboardX multiprocess pyrouge gensim spacy

Some codes are borrowed from BERTSUM(https://github.com/nlpyang/BertSum)

Data Preparation

Step 1 Download Stories

For CNNDM, download and unzip the stories directories from here for both CNN and Daily Mail. Put all .story files in one directory (e.g. ../raw_stories)

For New York Times dataset, you should get license from https://catalog.ldc.upenn.edu/LDC2008T19.

Step 2. Download Stanford CoreNLP

We will need Stanford CoreNLP to tokenize the data. Download it here and unzip it. Then add the following command to your bash_profile:

export CLASSPATH=/path/to/stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar

replacing /path/to/ with the path to where you saved the stanford-corenlp-full-2017-06-09 directory.

Step 3. Sentence Splitting and Tokenization

python preprocess.py -mode tokenize -raw_path RAW_PATH -save_path TOKENIZED_PATH
  • RAW_PATH is the directory containing story files (../raw_stories), JSON_PATH is the target directory to save the generated json files (../merged_stories_tokenized)

Step 4. Format to Simpler Json Files

python preprocess.py -mode format_to_lines -raw_path RAW_PATH -save_path JSON_PATH -n_cpus 1 -use_bert_basic_tokenizer false -map_path MAP_PATH
  • RAW_PATH is the directory containing tokenized files (../merged_stories_tokenized), JSON_PATH is the target directory to save the generated json files (../json_data/cnndm), MAP_PATH is the directory containing the urls files (../urls)

Step 5. Format to PyTorch Files

python preprocess.py -mode format_to_bert -raw_path JSON_PATH -save_path BERT_DATA_PATH  -lower -n_cpus 1 -log_file ../logs/preprocess.log
  • JSON_PATH is the directory containing json files (../json_data), BERT_DATA_PATH is the target directory to save the generated binary files (../bert_data)

We also summarize these instructions into a file train.sh.

Model Training

First run: For the first time, you should use single-GPU, so the code can download the BERT model. Use -visible_gpus -1, after downloading, you could kill the process and rerun the code with multi-GPUs.

python train.py  -task abs -mode train -bert_data_path BERT_DATA_PATH -dec_dropout 0.2  -model_path MODEL_PATH -sep_optim true -lr_bert 0.002 -lr_dec 0.2 -save_checkpoint_steps 2000 -batch_size 280 -train_steps 200000 -report_every 50 -accum_count 5 -use_bert_emb true -use_interval true -warmup_steps_bert 20000 -warmup_steps_dec 10000 -max_pos 512 -visible_gpus 0,1  -log_file ../logs/abs_bert_cnndm -init_method tcp://localhost:5000

Model Evaluation

python train.py -task abs -mode validate -batch_size 3000 -test_batch_size 500 -bert_data_path BERT_DATA_PATH -log_file ../logs/val_abs_bert_cnndm -model_path MODEL_PATH -sep_optim true -use_interval true -visible_gpus 1 -max_pos 512 -max_length 200 -alpha 0.95 -min_length 50 -result_path ../logs/abs_bert_cnndm 
  • -mode can be {validate, test}, where validate will inspect the model directory and evaluate the model for each newly saved checkpoint, test need to be used with -test_from, indicating the checkpoint you want to use
  • MODEL_PATH is the directory of saved checkpoints
  • use -mode valiadte with -test_all, the system will load all saved checkpoints and select the top ones to generate summaries (this will take a while)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published