Accepted to NeurIPS 2021.
Install the conda environment dbc
in conda_env.yml
.
Example: to run our IR+ID
model on the modified ContinuousCartpole-v0 task (called "Noisy Sparse Cartpole" in our manuscript) with N_m = 1
, run the following command:
python train.py --domain_name $TASK --agent bisim --decoder_type identity --noisy_observation \
--encoder_type mlp --seed 0 --device 0 --noisy_dims 1 \
--replay_buffer_capacity 50000 --encoder_max_norm \
--intrinsic_reward_type forward_mean --latent_prior inverse_dynamics \
--sparsity_factor 0.01 --num_train_steps 50000 --batch_size 512
For additional usage, run train.py --help
.
Scripts for reproducing all experiments in the paper are in the subfolder scripts
.
Our code is based on the original Deep Bisimulation for Control code: [paper] [code], which is CC-BY-NC 4.0 licensed.
If you use our codebase, please consider citing our paper:
@inproceedings{NEURIPS2021_256bf8e6,
author = {Kemertas, Mete and Aumentado-Armstrong, Tristan},
booktitle = {Advances in Neural Information Processing Systems},
editor = {M. Ranzato and A. Beygelzimer and Y. Dauphin and P.S. Liang and J. Wortman Vaughan},
pages = {4764--4777},
publisher = {Curran Associates, Inc.},
title = {Towards Robust Bisimulation Metric Learning},
url = {https://proceedings.neurips.cc/paper/2021/file/256bf8e6923a52fda8ddf7dc050a1148-Paper.pdf},
volume = {34},
year = {2021}
}