Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[LogitProcessor] Add max thread awareness to logit processing kernels #1955

Merged
merged 1 commit into from
Mar 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
254 changes: 155 additions & 99 deletions python/mlc_llm/compiler_pass/attach_logit_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,113 +4,169 @@
from tvm import IRModule
from tvm.script import tir as T

from ..support.max_thread_check import (
check_thread_limits,
get_max_num_threads_per_block,
)


@tvm.transform.module_pass(opt_level=0, name="AttachLogitProcessFunc")
class AttachLogitProcessFunc: # pylint: disable=too-few-public-methods
"""Attach logit processing TIR functions to IRModule."""

def __init__(self, target: tvm.target.Target):
"""Initializer.

Parameters
----------
target : tvm.target.Target
The target of the model compilation.
"""
self.target = target

def transform_module(self, mod: IRModule, _ctx: tvm.transform.PassContext) -> IRModule:
"""Entrypoint"""
mod = mod.clone()
mod["apply_logit_bias_inplace"] = _apply_logit_bias_inplace
mod["apply_penalty_inplace"] = _apply_penalty_inplace
mod["apply_bitmask_inplace"] = _apply_bitmask_inplace
mod["apply_logit_bias_inplace"] = _get_apply_logit_bias_inplace(self.target)
mod["apply_penalty_inplace"] = _get_apply_penalty_inplace(self.target)
mod["apply_bitmask_inplace"] = _get_apply_bitmask_inplace(self.target)
return mod


@T.prim_func
def _apply_logit_bias_inplace(
var_logits: T.handle,
var_pos2seq_id: T.handle,
var_token_ids: T.handle,
var_logit_bias: T.handle,
) -> None:
"""Function that applies logit bias in place."""
T.func_attr(
{"global_symbol": "apply_logit_bias_inplace", "tir.noalias": True, "tir.is_scheduled": True}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_token = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
# seq_ids
pos2seq_id = T.match_buffer(var_pos2seq_id, (num_token,), "int32")
token_ids = T.match_buffer(var_token_ids, (num_token,), "int32")
logit_bias = T.match_buffer(var_logit_bias, (num_token,), "float32")

for p0 in T.thread_binding(0, (num_token + 1023) // 1024, "blockIdx.x"):
for p1 in T.thread_binding(0, 1024, "threadIdx.x"):
with T.block("block"):
vp = T.axis.spatial(num_token, p0 * 1024 + p1)
T.where(p0 * 1024 + p1 < num_token)
logits[pos2seq_id[vp], token_ids[vp]] += logit_bias[vp]


@T.prim_func
def _apply_penalty_inplace( # pylint: disable=too-many-arguments,too-many-locals
var_logits: T.handle,
var_seq_ids: T.handle,
var_pos2seq_id: T.handle,
var_token_ids: T.handle,
var_token_cnt: T.handle,
var_penalties: T.handle,
) -> None:
"""Function that applies penalties in place."""
T.func_attr(
{"global_symbol": "apply_penalty_inplace", "tir.noalias": True, "tir.is_scheduled": True}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_token = T.int32(is_size_var=True)
num_seq = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
seq_ids = T.match_buffer(var_seq_ids, (num_seq,), "int32")
pos2seq_id = T.match_buffer(var_pos2seq_id, (num_token,), "int32")
token_ids = T.match_buffer(var_token_ids, (num_token,), "int32")
token_cnt = T.match_buffer(var_token_cnt, (num_token,), "int32")
penalties = T.match_buffer(var_penalties, (num_seq, 3), "float32")

for p0 in T.thread_binding(0, (num_token + 1023) // 1024, "blockIdx.x"):
for p1 in T.thread_binding(0, 1024, "threadIdx.x"):
with T.block("block"):
vp = T.axis.spatial(num_token, p0 * 1024 + p1)
T.where(p0 * 1024 + p1 < num_token)
# Penalties: (presence_penalty, frequency_penalty, repetition_penalty)
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] -= (
penalties[pos2seq_id[vp], 0] + token_cnt[vp] * penalties[pos2seq_id[vp], 1]
)
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] = T.if_then_else(
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] > 0,
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] * penalties[pos2seq_id[vp], 2],
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] / penalties[pos2seq_id[vp], 2],
)


@T.prim_func
def _apply_bitmask_inplace(
var_logits: T.handle,
var_seq_ids: T.handle,
var_bitmask: T.handle,
) -> None:
"""Function that applies vocabulary masking in place."""
T.func_attr(
{"global_symbol": "apply_bitmask_inplace", "tir.noalias": True, "tir.is_scheduled": True}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_seq = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
seq_ids = T.match_buffer(var_seq_ids, (num_seq,), "int32")
bitmask = T.match_buffer(var_bitmask, (batch_size, (vocab_size + 31) // 32), "int32")

for fused_s_v_0 in T.thread_binding(0, (num_seq * vocab_size + 1023) // 1024, "blockIdx.x"):
for fused_s_v_1 in T.thread_binding(0, 1024, "threadIdx.x"):
with T.block("block"):
vs = T.axis.spatial(num_seq, (fused_s_v_0 * 1024 + fused_s_v_1) // vocab_size)
vv = T.axis.spatial(vocab_size, (fused_s_v_0 * 1024 + fused_s_v_1) % vocab_size)
T.where(fused_s_v_0 * 1024 + fused_s_v_1 < num_seq * vocab_size)
logits[seq_ids[vs], vv] = T.if_then_else(
(bitmask[seq_ids[vs], vv // 32] >> (vv % 32)) & 1 == 1,
logits[seq_ids[vs], vv],
T.float32(-1e10),
)
def _get_apply_logit_bias_inplace(target: tvm.target.Target):
tx = 1024 # default
max_num_threads_per_block = get_max_num_threads_per_block(target)
if max_num_threads_per_block < tx:
tx = max_num_threads_per_block
check_thread_limits(target, bdx=tx, bdy=1, bdz=1, gdz=1)

@T.prim_func
def _apply_logit_bias_inplace(
var_logits: T.handle,
var_pos2seq_id: T.handle,
var_token_ids: T.handle,
var_logit_bias: T.handle,
) -> None:
"""Function that applies logit bias in place."""
T.func_attr(
{
"global_symbol": "apply_logit_bias_inplace",
"tir.noalias": True,
"tir.is_scheduled": True,
}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_token = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
# seq_ids
pos2seq_id = T.match_buffer(var_pos2seq_id, (num_token,), "int32")
token_ids = T.match_buffer(var_token_ids, (num_token,), "int32")
logit_bias = T.match_buffer(var_logit_bias, (num_token,), "float32")

for p0 in T.thread_binding(0, (num_token + tx - 1) // tx, "blockIdx.x"):
for p1 in T.thread_binding(0, tx, "threadIdx.x"):
with T.block("block"):
vp = T.axis.spatial(num_token, p0 * tx + p1)
T.where(p0 * tx + p1 < num_token)
logits[pos2seq_id[vp], token_ids[vp]] += logit_bias[vp]

return _apply_logit_bias_inplace


def _get_apply_penalty_inplace(target: tvm.target.Target):
tx = 1024 # default
max_num_threads_per_block = get_max_num_threads_per_block(target)
if max_num_threads_per_block < tx:
tx = max_num_threads_per_block
check_thread_limits(target, bdx=tx, bdy=1, bdz=1, gdz=1)

@T.prim_func
def _apply_penalty_inplace( # pylint: disable=too-many-arguments,too-many-locals
var_logits: T.handle,
var_seq_ids: T.handle,
var_pos2seq_id: T.handle,
var_token_ids: T.handle,
var_token_cnt: T.handle,
var_penalties: T.handle,
) -> None:
"""Function that applies penalties in place."""
T.func_attr(
{
"global_symbol": "apply_penalty_inplace",
"tir.noalias": True,
"tir.is_scheduled": True,
}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_token = T.int32(is_size_var=True)
num_seq = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
seq_ids = T.match_buffer(var_seq_ids, (num_seq,), "int32")
pos2seq_id = T.match_buffer(var_pos2seq_id, (num_token,), "int32")
token_ids = T.match_buffer(var_token_ids, (num_token,), "int32")
token_cnt = T.match_buffer(var_token_cnt, (num_token,), "int32")
penalties = T.match_buffer(var_penalties, (num_seq, 3), "float32")

for p0 in T.thread_binding(0, (num_token + tx - 1) // tx, "blockIdx.x"):
for p1 in T.thread_binding(0, tx, "threadIdx.x"):
with T.block("block"):
vp = T.axis.spatial(num_token, p0 * tx + p1)
T.where(p0 * tx + p1 < num_token)
# Penalties: (presence_penalty, frequency_penalty, repetition_penalty)
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] -= (
penalties[pos2seq_id[vp], 0] + token_cnt[vp] * penalties[pos2seq_id[vp], 1]
)
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] = T.if_then_else(
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] > 0,
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]]
* penalties[pos2seq_id[vp], 2],
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]]
/ penalties[pos2seq_id[vp], 2],
)

return _apply_penalty_inplace


def _get_apply_bitmask_inplace(target: tvm.target.Target):
tx = 1024 # default
max_num_threads_per_block = get_max_num_threads_per_block(target)
if max_num_threads_per_block < tx:
tx = max_num_threads_per_block
check_thread_limits(target, bdx=tx, bdy=1, bdz=1, gdz=1)

@T.prim_func
def _apply_bitmask_inplace(
var_logits: T.handle,
var_seq_ids: T.handle,
var_bitmask: T.handle,
) -> None:
"""Function that applies vocabulary masking in place."""
T.func_attr(
{
"global_symbol": "apply_bitmask_inplace",
"tir.noalias": True,
"tir.is_scheduled": True,
}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_seq = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
seq_ids = T.match_buffer(var_seq_ids, (num_seq,), "int32")
bitmask = T.match_buffer(var_bitmask, (batch_size, (vocab_size + 31) // 32), "int32")

for fused_s_v_0 in T.thread_binding(0, (num_seq * vocab_size + tx - 1) // tx, "blockIdx.x"):
for fused_s_v_1 in T.thread_binding(0, tx, "threadIdx.x"):
with T.block("block"):
vs = T.axis.spatial(num_seq, (fused_s_v_0 * tx + fused_s_v_1) // vocab_size)
vv = T.axis.spatial(vocab_size, (fused_s_v_0 * tx + fused_s_v_1) % vocab_size)
T.where(fused_s_v_0 * tx + fused_s_v_1 < num_seq * vocab_size)
logits[seq_ids[vs], vv] = T.if_then_else(
(bitmask[seq_ids[vs], vv // 32] >> (vv % 32)) & 1 == 1,
logits[seq_ids[vs], vv],
T.float32(-1e10),
)

return _apply_bitmask_inplace
2 changes: 1 addition & 1 deletion python/mlc_llm/compiler_pass/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ def _pipeline(mod: tvm.ir.IRModule, _ctx: tvm.transform.PassContext) -> tvm.ir.I
# Phase 0. Add additional information for compilation and remove unused Relax func
DispatchKVCacheCreation(target, flashinfer, metadata),
AttachVariableBounds(variable_bounds),
AttachLogitProcessFunc(),
AttachLogitProcessFunc(target),
AttachAdditionalPrimFuncs(additional_tirs),
AttachAllocEmbeddingTensorFunc(metadata),
AttachGPUSamplingFunc(target, variable_bounds),
Expand Down
Loading