Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backend] Initial support of CPU backend #3116

Merged
merged 2 commits into from
Feb 3, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions cpp/serve/sampler/cpu_sampler.cc
Original file line number Diff line number Diff line change
Expand Up @@ -554,6 +554,10 @@ class CPUSampler : public SamplerObj {
/*! \brief Copy prob distributions from device to CPU. */
NDArray CopyProbsToCPU(NDArray probs_on_device) {
// probs_on_device: (n, v)
if (probs_on_device->device.device_type == kDLCPU) {
return probs_on_device;
}

ICHECK(probs_on_device->device.device_type != kDLCPU);
if (probs_host_.defined()) {
ICHECK_EQ(probs_host_->shape[1], probs_on_device->shape[1]);
Expand Down
122 changes: 119 additions & 3 deletions python/mlc_llm/compiler_pass/attach_logit_processor.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,12 +27,48 @@ def __init__(self, target: tvm.target.Target):
def transform_module(self, mod: IRModule, _ctx: tvm.transform.PassContext) -> IRModule:
"""Entrypoint"""
mod = mod.clone()
mod["apply_logit_bias_inplace"] = _get_apply_logit_bias_inplace(self.target)
mod["apply_penalty_inplace"] = _get_apply_penalty_inplace(self.target)
mod["apply_bitmask_inplace"] = _get_apply_bitmask_inplace(self.target)
if str(self.target.kind) == "llvm":
mod["apply_logit_bias_inplace"] = _get_apply_logit_bias_inplace_cpu()
mod["apply_penalty_inplace"] = _get_apply_penalty_inplace_cpu()
mod["apply_bitmask_inplace"] = _get_apply_bitmask_inplace_cpu()
else:
mod["apply_logit_bias_inplace"] = _get_apply_logit_bias_inplace(self.target)
mod["apply_penalty_inplace"] = _get_apply_penalty_inplace(self.target)
mod["apply_bitmask_inplace"] = _get_apply_bitmask_inplace(self.target)
return mod


def _get_apply_logit_bias_inplace_cpu():
@T.prim_func
def _apply_logit_bias_inplace(
var_logits: T.handle,
var_pos2seq_id: T.handle,
var_token_ids: T.handle,
var_logit_bias: T.handle,
) -> None:
"""Function that applies logit bias in place."""
T.func_attr(
{
"global_symbol": "apply_logit_bias_inplace",
"tir.noalias": True,
"tir.is_scheduled": True,
}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_token = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
# seq_ids
pos2seq_id = T.match_buffer(var_pos2seq_id, (num_token,), "int32")
token_ids = T.match_buffer(var_token_ids, (num_token,), "int32")
logit_bias = T.match_buffer(var_logit_bias, (num_token,), "float32")

for i in range(num_token):
logits[pos2seq_id[i], token_ids[i]] += logit_bias[i]

return _apply_logit_bias_inplace


def _get_apply_logit_bias_inplace(target: tvm.target.Target):
tx = 1024 # default
max_num_threads_per_block = get_max_num_threads_per_block(target)
Expand Down Expand Up @@ -74,6 +110,50 @@ def _apply_logit_bias_inplace(
return _apply_logit_bias_inplace


def _get_apply_penalty_inplace_cpu():
@T.prim_func
def _apply_penalty_inplace( # pylint: disable=too-many-arguments,too-many-locals
var_logits: T.handle,
var_seq_ids: T.handle,
var_pos2seq_id: T.handle,
var_token_ids: T.handle,
var_token_cnt: T.handle,
var_penalties: T.handle,
) -> None:
"""Function that applies penalties in place."""
T.func_attr(
{
"global_symbol": "apply_penalty_inplace",
"tir.noalias": True,
"tir.is_scheduled": True,
}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_token = T.int32(is_size_var=True)
num_seq = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
seq_ids = T.match_buffer(var_seq_ids, (num_seq,), "int32")
pos2seq_id = T.match_buffer(var_pos2seq_id, (num_token,), "int32")
token_ids = T.match_buffer(var_token_ids, (num_token,), "int32")
token_cnt = T.match_buffer(var_token_cnt, (num_token,), "int32")
penalties = T.match_buffer(var_penalties, (num_seq, 3), "float32")

for token in T.serial(num_token):
with T.block("block"):
vp = T.axis.spatial(num_token, token)
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] -= (
penalties[pos2seq_id[vp], 0] + token_cnt[vp] * penalties[pos2seq_id[vp], 1]
)
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] = T.if_then_else(
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] < 0,
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] * penalties[pos2seq_id[vp], 2],
logits[seq_ids[pos2seq_id[vp]], token_ids[vp]] / penalties[pos2seq_id[vp], 2],
)

return _apply_penalty_inplace


def _get_apply_penalty_inplace(target: tvm.target.Target):
tx = 1024 # default
max_num_threads_per_block = get_max_num_threads_per_block(target)
Expand Down Expand Up @@ -129,6 +209,42 @@ def _apply_penalty_inplace( # pylint: disable=too-many-arguments,too-many-local
return _apply_penalty_inplace


def _get_apply_bitmask_inplace_cpu():
@T.prim_func
def _apply_bitmask_inplace(
var_logits: T.handle,
var_seq_ids: T.handle,
var_bitmask: T.handle,
) -> None:
"""Function that applies vocabulary masking in place."""
T.func_attr(
{
"global_symbol": "apply_bitmask_inplace",
"tir.noalias": True,
"tir.is_scheduled": True,
}
)
batch_size = T.int32(is_size_var=True)
vocab_size = T.int32(is_size_var=True)
num_seq = T.int32(is_size_var=True)
logits = T.match_buffer(var_logits, (batch_size, vocab_size), "float32")
seq_ids = T.match_buffer(var_seq_ids, (num_seq,), "int32")
bitmask = T.match_buffer(var_bitmask, (batch_size, (vocab_size + 31) // 32), "int32")

for token in T.serial(num_seq * vocab_size):
with T.block("block"):
vs = T.axis.spatial(num_seq, (token) // vocab_size)
vv = T.axis.spatial(vocab_size, (token) % vocab_size)

logits[seq_ids[vs], vv] = T.if_then_else(
(bitmask[seq_ids[vs], vv // 32] >> (vv % 32)) & 1 == 1,
logits[seq_ids[vs], vv],
T.min_value("float32"),
)

return _apply_bitmask_inplace


def _get_apply_bitmask_inplace(target: tvm.target.Target):
tx = 1024 # default
max_num_threads_per_block = get_max_num_threads_per_block(target)
Expand Down
60 changes: 33 additions & 27 deletions python/mlc_llm/compiler_pass/attach_softmax_with_temperature.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,31 +213,37 @@ def softmax_with_chunked_sum(
)

sch = tvm.tir.Schedule(IRModule({"softmax_with_chunked_sum": softmax_with_chunked_sum}))
max_threads = get_max_num_threads_per_block(target)
TX = 32
TY = max_threads // TX
unroll_depth = 64
# pylint: enable=invalid-name

sch.work_on("softmax_with_chunked_sum")
l0, l1, l2 = sch.get_loops("log_pad")
bx = sch.fuse(l0, l1)
sch.bind(bx, "blockIdx.x")
unroll, ty, tx = sch.split(l2, [None, TY, TX])
sch.bind(ty, "threadIdx.y")
sch.bind(tx, "threadIdx.x")
sch.annotate(unroll, ann_key="pragma_auto_unroll_max_step", ann_val=unroll_depth)
sch.annotate(unroll, ann_key="pragma_unroll_explicit", ann_val=1)

for block_name in ["sum_exp", "max"]:
block = sch.get_block(block_name)
sch.set_scope(block, buffer_index=0, storage_scope="shared")
sch.compute_at(block, bx)
r_loop = sch.get_loops(block)[-1]
r_loop, tx = sch.split(r_loop, [None, TX])
sch.reorder(tx, r_loop)
sch.bind(tx, "threadIdx.x")
sch.annotate(r_loop, ann_key="pragma_auto_unroll_max_step", ann_val=unroll_depth)
sch.annotate(r_loop, ann_key="pragma_unroll_explicit", ann_val=1)

return chunk_lse, sch.mod["softmax_with_chunked_sum"]
def apply_gpu_schedule(target, sch):
max_threads = get_max_num_threads_per_block(target)
TX = 32
TY = max_threads // TX
unroll_depth = 64
# pylint: enable=invalid-name

sch.work_on("softmax_with_chunked_sum")
l0, l1, l2 = sch.get_loops("log_pad")
bx = sch.fuse(l0, l1)
sch.bind(bx, "blockIdx.x")
unroll, ty, tx = sch.split(l2, [None, TY, TX])
sch.bind(ty, "threadIdx.y")
sch.bind(tx, "threadIdx.x")
sch.annotate(unroll, ann_key="pragma_auto_unroll_max_step", ann_val=unroll_depth)
sch.annotate(unroll, ann_key="pragma_unroll_explicit", ann_val=1)

for block_name in ["sum_exp", "max"]:
block = sch.get_block(block_name)
sch.set_scope(block, buffer_index=0, storage_scope="shared")
sch.compute_at(block, bx)
r_loop = sch.get_loops(block)[-1]
r_loop, tx = sch.split(r_loop, [None, TX])
sch.reorder(tx, r_loop)
sch.bind(tx, "threadIdx.x")
sch.annotate(r_loop, ann_key="pragma_auto_unroll_max_step", ann_val=unroll_depth)
sch.annotate(r_loop, ann_key="pragma_unroll_explicit", ann_val=1)

return chunk_lse, sch.mod["softmax_with_chunked_sum"]

if target.kind.name == "llvm":
return chunk_lse, sch.mod["softmax_with_chunked_sum"]
return apply_gpu_schedule(target, sch)
12 changes: 10 additions & 2 deletions python/mlc_llm/compiler_pass/pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,11 @@ def _pipeline(mod: tvm.ir.IRModule, _ctx: tvm.transform.PassContext) -> tvm.ir.I
FuseFTDequantizeEpilogue(),
FuseDequantizeTranspose(),
BLASDispatch(target) if cublas_gemm else tvm.transform.Sequential([]),
FuseAddRMSNorm(target=target),
(
FuseAddRMSNorm(target=target)
if target.kind.name != "llvm"
else tvm.transform.Sequential([])
),
FuseTransposeMatmul(),
_DebugDump("debug-phase1.py", debug_dump, show_meta=False),
# Phase 2. Lowering to TIR, inherited TVM Relax's official "zero" pipeline
Expand Down Expand Up @@ -152,7 +156,11 @@ def _pipeline(mod: tvm.ir.IRModule, _ctx: tvm.transform.PassContext) -> tvm.ir.I
),
_DebugDump("debug-phase4.py", debug_dump, show_meta=False),
_LogProgress("Lowering to VM bytecode"),
LiftTIRGlobalBufferAlloc(),
(
LiftTIRGlobalBufferAlloc()
if target.kind.name != "llvm"
else tvm.transform.Sequential([])
),
(
tvm.tir.transform.ForceNarrowIndexToInt32()
if target.kind.name != "cuda"
Expand Down
2 changes: 1 addition & 1 deletion python/mlc_llm/support/auto_device.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@

FOUND = green("Found")
NOT_FOUND = red("Not found")
AUTO_DETECT_DEVICES = ["cuda", "rocm", "metal", "vulkan", "opencl"]
AUTO_DETECT_DEVICES = ["cpu", "cuda", "rocm", "metal", "vulkan", "opencl"]
_RESULT_CACHE: Dict[str, bool] = {}


Expand Down
Loading