-
Notifications
You must be signed in to change notification settings - Fork 70
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* remove relative imports * sm-integration * folder rename + args for region, arn, s3 * setup.py fixes * cleanup tri mentions + address nits * Updates for sagemaker integration * sm fixes * format + conflicts --------- Co-authored-by: Achal Dave <[email protected]> Co-authored-by: Achal Dave <[email protected]>
- Loading branch information
1 parent
176f869
commit 0da1e0c
Showing
7 changed files
with
286 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
venv | ||
wandb | ||
logs | ||
checkpoints |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -139,5 +139,6 @@ weights* | |
out* | ||
tests/assets/* | ||
.vscode/ | ||
secrets.env | ||
checkpoints/ | ||
experiments/ |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
ARG AWS_REGION | ||
|
||
# SageMaker PyTorch image | ||
FROM 763104351884.dkr.ecr.${AWS_REGION}.amazonaws.com/pytorch-training:2.1.0-gpu-py310-cu121-ubuntu20.04-sagemaker | ||
|
||
# Run custom installation of libraries | ||
# RUN pip install xxx | ||
# RUN apt-get update && apt-get install -y xxx | ||
# ENV <your environment variables> | ||
# etc.... | ||
|
||
# Remove the conda installed symlink for libcurl, which causes an error with curl. | ||
# Fixes the following error: | ||
# curl: /opt/conda/lib/libcurl.so.4: no version information available (required by curl) | ||
RUN rm /opt/conda/lib/libcurl.so.4 | ||
|
||
ENV PATH="/opt/ml/code:${PATH}" | ||
|
||
# this environment variable is used by the SageMaker PyTorch container to determine our user code directory. | ||
ENV SAGEMAKER_SUBMIT_DIRECTORY /opt/ml/code | ||
|
||
# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code. | ||
COPY . /opt/ml/code/ | ||
RUN rm /opt/ml/code/setup.py | ||
|
||
RUN pip install -r /opt/ml/code/requirements.txt | ||
RUN pip uninstall flash-attn -y | ||
RUN pip install flash-attn>=2.2 | ||
# # Prevent sagemaker from installing requirements again. | ||
# RUN rm /opt/ml/code/setup.py | ||
RUN rm /opt/ml/code/requirements.txt | ||
|
||
# Defines a script entrypoint | ||
ENV SAGEMAKER_PROGRAM open_lm/main.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
ARG BASE_DOCKER | ||
# Dockerfile that updates the container with new code. | ||
# SageMaker PyTorch image | ||
FROM ${BASE_DOCKER} | ||
|
||
# /opt/ml and all subdirectories are utilized by SageMaker, use the /code subdirectory to store your user code. | ||
COPY . /opt/ml/code/ | ||
|
||
# RUN pip install -e /opt/ml/code/ | ||
|
||
# Prevent sagemaker from installing requirements again. | ||
RUN rm /opt/ml/code/setup.py | ||
RUN rm /opt/ml/code/requirements.txt | ||
|
||
ENV SAGEMAKER_PROGRAM open_lm/main.py |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
accum-freq: 4 | ||
beta1: 0.9 | ||
beta2: 0.95 | ||
data-key: "json" | ||
dataset-resampled: True | ||
# delete-previous-checkpoint: False | ||
# Total 25B * 40 = 1T tokens | ||
epochs: 40 | ||
fsdp: True | ||
fsdp-limit-all-gathers: True | ||
# grad-checkpointing: False | ||
grad-clip-norm: 1 | ||
log-every-n-steps: 20 | ||
model: "open_lm_7b" | ||
name: "sample_7b" | ||
precision: "amp_bfloat16" | ||
report-to: "wandb" | ||
seed: 124 | ||
train-data-mix-weights: [0.725, 0.275] | ||
train-data: ["TODO"] | ||
train-num-samples: 25_000_000_000 | ||
wandb-project-name: "lm1" | ||
workers: 4 | ||
logs: /opt/ml/checkpoints/ | ||
|
||
# Some important parameters, double checked with Mitchell: | ||
batch-size: 16 | ||
ffn-type: swiglu | ||
# fsdp-amp: False | ||
fsdp-pure-bf16: True | ||
fsdp-backward-prefetch: True | ||
lr: 3.e-4 | ||
lr-cooldown-end: 3.e-5 | ||
model-norm: "gain_only_lp_layer_norm" | ||
qk-norm: True | ||
warmup: 5000 | ||
wd: 0.1 | ||
z-loss-coefficient: 1.e-4 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
import argparse | ||
import time | ||
import os | ||
import subprocess | ||
from datetime import datetime | ||
from pathlib import Path | ||
|
||
import boto3 | ||
import sagemaker | ||
from sagemaker.pytorch import PyTorch | ||
|
||
|
||
NAME = "openlm-main" | ||
INSTANCE_MAPPER = { | ||
"p4": "ml.p4d.24xlarge", | ||
"p4de": "ml.p4de.24xlarge", | ||
"p5": "ml.p5.48xlarge", | ||
} | ||
|
||
|
||
def run_command(command): | ||
print(f"=> {command}") | ||
subprocess.run(command, shell=True, check=True) | ||
|
||
|
||
def get_image(user, instance_type, build_type=None, profile="poweruser", region="us-east-1"): | ||
os.environ["AWS_PROFILE"] = f"{profile}" | ||
account = subprocess.getoutput( | ||
f"aws --region {region} --profile {profile} sts get-caller-identity --query Account --output text" | ||
) | ||
docker_dir = Path(__file__).parent | ||
if instance_type in ("p4", "p4de"): | ||
algorithm_name = f"{user}-{NAME}-p4" | ||
dockerfile_base = docker_dir / "Dockerfile" | ||
dockerfile_update = docker_dir / "Dockerfile_update" | ||
elif instance_type == "p5": | ||
algorithm_name = f"{user}-{NAME}-p5" | ||
dockerfile_base = docker_dir / "Dockerfile" | ||
dockerfile_update = docker_dir / "Dockerfile_update" | ||
else: | ||
raise ValueError(f"Unknown instance_type: {instance_type}") | ||
fullname = f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest" | ||
if build_type is None: | ||
return fullname | ||
|
||
login_cmd = f"aws ecr get-login-password --region {region} --profile {profile} | docker login --username AWS --password-stdin" | ||
|
||
if build_type == "full": | ||
print("Building container") | ||
commands = [ | ||
# Log in to Sagemaker account to get image. | ||
f"{login_cmd} 763104351884.dkr.ecr.{region}.amazonaws.com", | ||
f"docker build --progress=plain -f {dockerfile_base} --build-arg AWS_REGION={region} -t {algorithm_name} .", | ||
f"docker tag {algorithm_name} {fullname}", | ||
f"{login_cmd} {fullname}", | ||
( | ||
f"aws --region {region} ecr describe-repositories --repository-names {algorithm_name} || " | ||
f"aws --region {region} ecr create-repository --repository-name {algorithm_name}" | ||
), | ||
] | ||
elif build_type == "update": | ||
print("Updating container") | ||
commands = [ | ||
f"docker build --progress=plain -f {dockerfile_update} --build-arg BASE_DOCKER={algorithm_name} -t {algorithm_name} .", | ||
f"docker tag {algorithm_name} {fullname}", | ||
f"{login_cmd} {fullname}", | ||
] | ||
else: | ||
raise ValueError(f"Unknown build_type: {build_type}") | ||
|
||
# Create command, making sure to exit if any part breaks. | ||
command = "\n".join([f"{x} || exit 1" for x in commands]) | ||
run_command(command) | ||
run_command(f"docker push {fullname}") | ||
print("Sleeping for 5 seconds to ensure push succeeded") | ||
time.sleep(5) | ||
return f"{account}.dkr.ecr.{region}.amazonaws.com/{algorithm_name}:latest" | ||
|
||
|
||
def main(): | ||
# Use first line of file docstring as description if it exists. | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--build-type", choices=["full", "update"], help="Build image from scratch") | ||
parser.add_argument("--local", action="store_true") | ||
parser.add_argument("--user", required=True, help="User name") | ||
parser.add_argument("--cfg-path", required=True, help="Launch config") | ||
|
||
# AWS profile args | ||
parser.add_argument("--region", default="us-east-1", help="AWS region") | ||
parser.add_argument("--profile", default="poweruser", help="AWS profile to use") | ||
parser.add_argument("--arn", default=None, help="If None, reads from SAGEMAKER_ARN env var") | ||
parser.add_argument( | ||
"--s3-remote-sync", default=None, help="S3 path to sync to. If none, reads from S3_REMOTE_SYNC env var" | ||
) | ||
|
||
# Instance args | ||
parser.add_argument("--instance-count", default=1, type=int, help="Number of instances") | ||
parser.add_argument("--instance-type", default="p4de", choices=list(INSTANCE_MAPPER.keys())) | ||
parser.add_argument("--spot-instance", action="store_true") | ||
|
||
args = parser.parse_args() | ||
main_after_setup_move(args) | ||
|
||
|
||
def main_after_setup_move(args): | ||
if args.arn is None: | ||
assert "SAGEMAKER_ARN" in os.environ, "Please specify --arn or set the SAGEMAKER_ARN environment variable" | ||
args.arn = os.environ["SAGEMAKER_ARN"] | ||
|
||
if args.s3_remote_sync is None: | ||
assert ( | ||
"S3_REMOTE_SYNC" in os.environ | ||
), "Please specify --s3-remote-sync or set the S3_REMOTE_SYNC environment variable" | ||
args.s3_remote_sync = os.environ["S3_REMOTE_SYNC"] | ||
|
||
image = get_image( | ||
args.user, | ||
args.instance_type, | ||
region=args.region, | ||
build_type=args.build_type, | ||
profile=args.profile, | ||
) | ||
|
||
########## | ||
# Create session and make sure of account and region | ||
########## | ||
sagemaker_session = sagemaker.Session(boto_session=boto3.session.Session(region_name=args.region)) | ||
|
||
role = args.arn | ||
# provide a pre-existing role ARN as an alternative to creating a new role | ||
role_name = role.split(["/"][-1]) | ||
print(f"SageMaker Execution Role:{role}") | ||
print(f"The name of the Execution role: {role_name[-1]}") | ||
|
||
client = boto3.client("sts") | ||
account = client.get_caller_identity()["Account"] | ||
print(f"AWS account:{account}") | ||
|
||
session = boto3.session.Session() | ||
region = session.region_name | ||
print(f"AWS region:{region}") | ||
|
||
########## | ||
# Configure the training | ||
########## | ||
base_job_name = f"{args.user.replace('.', '-')}-{NAME}" | ||
|
||
checkpoint_local_path = "/opt/ml/checkpoints" | ||
|
||
def get_job_name(base): | ||
now = datetime.now() | ||
# Format example: 2023-03-03-10-14-02-324 | ||
now_ms_str = f"{now.microsecond // 1000:03d}" | ||
date_str = f"{now.strftime('%Y-%m-%d-%H-%M-%S')}-{now_ms_str}" | ||
|
||
job_name = "_".join([base, date_str]) | ||
|
||
return job_name | ||
|
||
job_name = get_job_name(base_job_name) | ||
|
||
output_root = f"{args.s3_remote_sync}/sagemaker/{args.user}/{NAME}/" | ||
output_s3 = os.path.join(output_root, job_name) | ||
|
||
estimator = PyTorch( | ||
entry_point="open_lm/main.py", | ||
sagemaker_session=sagemaker_session, | ||
base_job_name=base_job_name, | ||
hyperparameters={"config": args.cfg_path}, | ||
role=role, | ||
image_uri=image, | ||
instance_count=args.instance_count, | ||
instance_type="local_gpu" if args.local else INSTANCE_MAPPER[args.instance_type], | ||
train_use_spot_instances=args.spot_instance, | ||
output_path=output_s3, | ||
job_name=job_name, | ||
checkpoint_s3_uri=None if args.local else f"{output_s3}/checkpoint", | ||
checkpoint_local_path=None if args.local else checkpoint_local_path, | ||
code_location=output_s3, | ||
# Training using SMDataParallel Distributed Training Framework | ||
distribution={"torch_distributed": {"enabled": True}}, | ||
# Max run 5 days | ||
max_run=5 * 24 * 60 * 60, | ||
max_wait=5 * 24 * 60 * 60 if args.spot_instance else None, | ||
input_mode="FastFile", | ||
# environment={"TORCH_DISTRIBUTED_DEBUG": "DETAIL", "TORCH_CPP_LOG_LEVEL": "INFO"}, | ||
keep_alive_period_in_seconds=30 * 60 if not args.spot_instance else None, # 30 minutes | ||
) | ||
|
||
estimator.fit() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |