Skip to content

montrealrobotics/deepRL-sub-opt

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepRL Sub-optimality

Code for the paper on analyzing the sub-optimality of deep RL algorithms. Based on the cleanrl codebase.

classic control

python cleanrl/dqn.py --env-id CartPole-v1 python cleanrl/ppo.py --env-id CartPole-v1 python cleanrl/c51.py --env-id CartPole-v1

atari

poetry install -E atari python cleanrl/dqn_atari.py --env-id BreakoutNoFrameskip-v4 python cleanrl/c51_atari.py --env-id BreakoutNoFrameskip-v4 python cleanrl/ppo_atari.py --env-id BreakoutNoFrameskip-v4 python cleanrl/sac_atari.py --env-id BreakoutNoFrameskip-v4

Citing Paper

If you use CleanRL in your work, please cite our technical paper:

@misc{berseth2025explorationoptimizationproblemdeep,
      title={Is Exploration or Optimization the Problem for Deep Reinforcement Learning?}, 
      author={Glen Berseth},
      year={2025},
      eprint={2508.01329},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2508.01329}, 
}

About

Code for paper on studying the optimization challenges of deep RL algorithms.

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 93.4%
  • Shell 5.8%
  • Other 0.8%