-
Couldn't load subscription status.
- Fork 315
Fix LangChainDeprecationWarning: The class LLMChain was deprecated #4828
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -15,7 +15,7 @@ | |
| from typing import Iterable, Literal, Optional | ||
|
|
||
| import tenacity | ||
| from langchain.chains import ConversationChain, LLMChain | ||
| from langchain.chains import ConversationChain, RunnableSequence | ||
| from langchain.memory import ConversationBufferMemory | ||
| from langchain.prompts import PromptTemplate | ||
| from langchain_openai import OpenAIEmbeddings | ||
|
|
@@ -1043,44 +1043,54 @@ def __init__( | |
| else "" | ||
| ) | ||
|
|
||
| self.summarization_chain = LLMChain( | ||
| prompt=PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_SUMMARIZATION, | ||
| partial_variables={ | ||
| "experience_scope": ( | ||
| f"the {self.target_software} source code" | ||
| if self.target_software | ||
| else "a software project" | ||
| ) | ||
| }, | ||
| ), | ||
| llm=self.llm, | ||
| verbose=verbose, | ||
| summarization_chain_prompt = PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_SUMMARIZATION, | ||
| partial_variables={ | ||
| "experience_scope": ( | ||
| f"the {self.target_software} source code" | ||
| if self.target_software | ||
| else "a software project" | ||
| ) | ||
| }, | ||
| ) | ||
| self.filtering_chain = LLMChain( | ||
| prompt=PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_FILTERING_ANALYSIS, | ||
| partial_variables={ | ||
| "target_code_consistency": self.target_software or "rest of the" | ||
| }, | ||
| ), | ||
| llm=self.llm, | ||
| verbose=verbose, | ||
|
|
||
| self.summarization_chain = RunnableSequence( | ||
| [summarization_chain_prompt, self.llm], verbose=verbose | ||
| ) | ||
|
|
||
| filtering_chain_prompt = PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_FILTERING_ANALYSIS, | ||
| partial_variables={ | ||
| "target_code_consistency": self.target_software or "rest of the" | ||
| }, | ||
| ) | ||
|
|
||
| self.filtering_chain = RunnableSequence( | ||
| [filtering_chain_prompt, self.llm], verbose=verbose | ||
| ) | ||
|
|
||
| deduplicating_chain_prompt = PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_DEDUPLICATE | ||
| ) | ||
|
|
||
| self.deduplicating_chain = RunnableSequence( | ||
| [deduplicating_chain_prompt, self.llm], verbose=verbose | ||
| ) | ||
| self.deduplicating_chain = LLMChain( | ||
| prompt=PromptTemplate.from_template(PROMPT_TEMPLATE_DEDUPLICATE), | ||
| llm=self.llm, | ||
| verbose=verbose, | ||
|
|
||
| further_context_prompt = PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_FURTHER_CONTEXT_LINES | ||
| ) | ||
| self.further_context_chain = LLMChain( | ||
| prompt=PromptTemplate.from_template(PROMPT_TEMPLATE_FURTHER_CONTEXT_LINES), | ||
| llm=self.llm, | ||
| verbose=verbose, | ||
|
|
||
| self.further_context_chain = RunnableSequence( | ||
| [further_context_prompt, self.llm], verbose=verbose | ||
| ) | ||
|
|
||
| further_info_chain_prompt = PromptTemplate.from_template( | ||
| PROMPT_TEMPLATE_FURTHER_INFO | ||
| ) | ||
| self.further_info_chain = LLMChain( | ||
| prompt=PromptTemplate.from_template(PROMPT_TEMPLATE_FURTHER_INFO), | ||
| llm=self.llm, | ||
| verbose=verbose, | ||
|
|
||
| self.further_info_chain = RunnableSequence( | ||
| [further_info_chain_prompt, self.llm], verbose=verbose | ||
| ) | ||
|
|
||
| self.function_search = function_search | ||
|
|
@@ -1107,17 +1117,17 @@ def run(self, patch: Patch) -> list[InlineComment] | None: | |
| return None | ||
|
|
||
| output_summarization = self.summarization_chain.invoke( | ||
| {"patch": formatted_patch}, | ||
| return_only_outputs=True, | ||
| )["text"] | ||
| {"patch": formatted_patch} | ||
| ) | ||
|
|
||
| if self.verbose: | ||
| GenerativeModelTool._print_answer(output_summarization) | ||
|
|
||
| if self.function_search is not None: | ||
| line_code_list = self.further_context_chain.run( | ||
| patch=formatted_patch, summarization=output_summarization | ||
| ).split("\n") | ||
| output_further_context = self.further_context_chain.invoke( | ||
| {"patch": formatted_patch, "summarization": output_summarization} | ||
| ) | ||
| line_code_list = output_further_context.split("\n") | ||
|
|
||
| if self.verbose: | ||
| GenerativeModelTool._print_answer(line_code_list) | ||
|
|
@@ -1129,11 +1139,12 @@ def run(self, patch: Patch) -> list[InlineComment] | None: | |
| formatted_patch, | ||
| ) | ||
|
|
||
| output_further_info = self.further_info_chain.invoke( | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is it returning a string, JSON or something else? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. One way to determine this is by running it. |
||
| {"patch": formatted_patch, "summarization": output_summarization} | ||
| ) | ||
| function_list = [ | ||
| function_name.strip() | ||
| for function_name in self.further_info_chain.run( | ||
| patch=formatted_patch, summarization=output_summarization | ||
| ).split("\n") | ||
| for function_name in output_further_info.split("\n") | ||
| ] | ||
|
|
||
| if self.verbose: | ||
|
|
@@ -1221,10 +1232,7 @@ def run(self, patch: Patch) -> list[InlineComment] | None: | |
| memory.clear() | ||
|
|
||
| if len(self.comment_gen_llms) > 1: | ||
| output = self.deduplicating_chain.invoke( | ||
| {"review": output}, | ||
| return_only_outputs=True, | ||
| )["text"] | ||
| output = self.deduplicating_chain.invoke({"review": output}) | ||
|
|
||
| if self.verbose: | ||
| GenerativeModelTool._print_answer(output) | ||
|
|
@@ -1245,9 +1253,8 @@ def run(self, patch: Patch) -> list[InlineComment] | None: | |
| "review": output, | ||
| "patch": patch.raw_diff, | ||
| "rejected_examples": rejected_examples, | ||
| }, | ||
| return_only_outputs=True, | ||
| )["text"] | ||
| } | ||
| ) | ||
|
|
||
| if self.verbose: | ||
| GenerativeModelTool._print_answer(raw_output) | ||
|
|
||
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can verbose used here?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I don't think so; you could check the documentation and test it.