Classify query to various intents as below
information_intent: intention to learn more about something. Eg. what is programming?, How does docking station work ?yelp_intent: intention to look for services/local businesses. Eg. italian food near me, floor repair costnavigation_intent: intention to navigate from search to the website. Eg. email login, bank branch routing numbertravel_intent: intention to travel. Eg. hotels in Paris, cruise trip to carribean islandspurchase_intent: intention to purchase products. Eg. price of us open tennis tickets, buy iphone 10weather_intent: to know the weather or temperature of a city. Eg. weather in Miami, temperature in Seattletranslation_intent: to translate from and to various languages. Eg. what is hello in spanish, translate hi to japaneseunknown: when the intent is inconclusive
- clone the repo
- python -m venv venv
- source /venv/bin/activate
- python -m pip install -r requirements
- streamlit run src/intent_app.py
steps 1 - 4 from above 5) python src/infer_intent.py
data preparation:
python src/data_prep_intent.py
intent model training:
python src/train_intent.py
(optional)
upload the model to hub:
python src/upload_intent.py
data preparation:
python src/data_prep_ner.py
NER model training:
python src/train_ner.py
(optional)
upload the model to hub:
python src/upload_ner.py
Steps to quantize:
venv/bin/python convert.py --model_id Mozilla/mobilebert-uncased-finetuned-LoRA-intent-classifier --quantize --modes q4 q8 fp16 --task text-classification --output_parent_dir output_models
venv/bin/python convert.py --model_id Mozilla/distilbert-uncased-NER-LoRA --quantize --modes q4 q8 fp16 --task token-classification --output_parent_dir output_models