Usage:
python lm-eval.py --model-path [model path on HF] --dataset-name [dataset name] --sample-output-file [json file name]
Supported models:
- models under deepseek-ai (e.g., deepseek-ai/DeepSeek-R1-Distill-Qwen-7B)
Supported datasets:
- AIME-2024
To add a model please add the corresponding generation config under the load_model function in file utils.py
, for instance:
if "deepseek-ai" in model_name:
model = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", trust_remote_code=True
).eval()
model.generation_config = GenerationConfig.from_pretrained(
model_name, trust_remote_code=True
)
model.generation_config.temperature = 0.6
model.generation_config.top_p = 0.95
model.generation_config.max_new_tokens = 32768
tokenizer = AutoTokenizer.from_pretrained(
model_name, trust_remote_code=True, bf16=True, use_flash_attn=True
)
return model, tokenizer
To add a customized dataset please add the corresponding dataset class in folder task
.
To add a customized prompt please add the template in template.py
and also update the load_dataset
function under utils.py
.