This is the Introduction of our repository, for the project-1 of natural language process (CS3602).
For those who maintaining the project, please be aware that you should work under the directories that you are respond to.
.
├── Dataset # 数据集存放
├── README.md # README
├── model # 模型存放
├── nlp-project1 # 项目一
├── nlp-project2 # 项目二
└── report.pdf # 报告
.
├── assets # 实验的统计数据表格和结果图片
│ ├── Comparison.png
│ ├── Dataset_results.xlsx
│ ├── Lora_results_on_1.5B.xlsx
│ ├── Parameter.png
│ ├── all_lora.png
│ ├── classical_lora.png
│ └── parameter.xlsx
├── auto_clean.py # 训练过程中清楚checkpoint脚本
├── eval.py # 简单的评估脚本
├── evaluation_results # opencompass评测结果
│ ├── LoRA_finetuned_eval
│ │ └── 20241231_210406
│ │ └── summary
│ │ ├── summary_20241231_210406.csv
│ │ ├── summary_20241231_210406.md
│ │ └── summary_20241231_210406.txt
│ ├── base_1.5B_eval
│ │ └── 20241231_200238
│ │ └── summary
│ │ ├── summary_20241231_200238.csv
│ │ ├── summary_20241231_200238.md
│ │ └── summary_20241231_200238.txt
│ ├── base_eval
│ │ └── 20241223_180428
│ │ └── summary
│ │ ├── summary_20241223_180428.csv
│ │ ├── summary_20241223_180428.md
│ │ └── summary_20241223_180428.txt
│ ├── evals_masked_sft
│ │ └── 20241223_174211
│ │ └── summary
│ │ ├── summary_20241223_174211.csv
│ │ ├── summary_20241223_174211.md
│ │ └── summary_20241223_174211.txt
│ └── evals_unmasked_sft
│ └── 20241224_171102
│ └── summary
│ ├── summary_20241224_171102.csv
│ ├── summary_20241224_171102.md
│ └── summary_20241224_171102.txt
├── finetune_masked.ipynb # 全序列输出SFT微调
├── finetune_unmasked.ipynb # output-onlySFT微调
└── peft.ipynb # peft lora微调
.
├── README.md #相关的使用方法和注意事项
├── main.py #聊天机器人主程序
├── model #聊天机器人实现
│ ├── __init__.py
│ ├── api_model.py
│ ├── base.py
│ ├── character_settings.yaml
│ └── local_model.py
├── model_test #聊天机器人测试程序和结果
│ ├── ans_character.txt
│ ├── ans_db.txt
│ ├── ans_harm.txt
│ ├── ans_info.txt
│ ├── ans_know.txt
│ ├── test_character.py
│ ├── test_db.py
│ └── test_model.py
├── requirements.txt #环境配置文件
└── server #一个简单的聊天机器人服务器
├── server.py
└── web
├── Chat.js
├── WebClientPage.html
└── style.css
For Qwen2.5-0.5B:
We will provide links for our output-loss only finetuned model and whole sequence model by the following links(named masked and unmasked):
download links by Baidu NetDisk, password 1234
download links by SJTU jBox, students and staff only, no dataset and base model
For Qwen2.5-1.5B:
We will provide links for our lora finetuned model by the following links:
download links by SJTU jBox, students and staff only, no base model
- The finetune-evaluation code is
finetune_masked.ipynb
andfinetuned_unmasked.ipynb
, for the previous one is for output loss only finetune and the second one is for whole sequence loss calculation. - The final evaluation results was in
evaluation_results
. The final statistical tables and pictures was inassets
. - After you downloaded the model, you can put the model at the following structure: