-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e9eae23
commit 37b5a89
Showing
2 changed files
with
182 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
|
||
function torchx.recursiveResizeAs(t1,t2) | ||
if torch.type(t2) == 'table' then | ||
t1 = (torch.type(t1) == 'table') and t1 or {t1} | ||
for key,_ in pairs(t2) do | ||
t1[key], t2[key] = torchx.recursiveResizeAs(t1[key], t2[key]) | ||
end | ||
elseif torch.isTensor(t2) then | ||
t1 = torch.isTensor(t1) and t1 or t2.new() | ||
t1:resizeAs(t2) | ||
else | ||
error("expecting nested tensors or tables. Got ".. | ||
torch.type(t1).." and "..torch.type(t2).." instead") | ||
end | ||
return t1, t2 | ||
end | ||
|
||
function torchx.recursiveSet(t1,t2) | ||
if torch.type(t2) == 'table' then | ||
t1 = (torch.type(t1) == 'table') and t1 or {t1} | ||
for key,_ in pairs(t2) do | ||
t1[key], t2[key] = torchx.recursiveSet(t1[key], t2[key]) | ||
end | ||
elseif torch.isTensor(t2) then | ||
t1 = torch.isTensor(t1) and t1 or t2.new() | ||
t1:set(t2) | ||
else | ||
error("expecting nested tensors or tables. Got ".. | ||
torch.type(t1).." and "..torch.type(t2).." instead") | ||
end | ||
return t1, t2 | ||
end | ||
|
||
function torchx.recursiveCopy(t1,t2) | ||
if torch.type(t2) == 'table' then | ||
t1 = (torch.type(t1) == 'table') and t1 or {t1} | ||
for key,_ in pairs(t2) do | ||
t1[key], t2[key] = torchx.recursiveCopy(t1[key], t2[key]) | ||
end | ||
elseif torch.isTensor(t2) then | ||
t1 = torch.isTensor(t1) and t1 or t2.new() | ||
t1:resizeAs(t2):copy(t2) | ||
else | ||
error("expecting nested tensors or tables. Got ".. | ||
torch.type(t1).." and "..torch.type(t2).." instead") | ||
end | ||
return t1, t2 | ||
end | ||
|
||
function torchx.recursiveAdd(t1, t2) | ||
if torch.type(t2) == 'table' then | ||
t1 = (torch.type(t1) == 'table') and t1 or {t1} | ||
for key,_ in pairs(t2) do | ||
t1[key], t2[key] = torchx.recursiveAdd(t1[key], t2[key]) | ||
end | ||
elseif torch.isTensor(t1) and torch.isTensor(t2) then | ||
t1:add(t2) | ||
else | ||
error("expecting nested tensors or tables. Got ".. | ||
torch.type(t1).." and "..torch.type(t2).." instead") | ||
end | ||
return t1, t2 | ||
end | ||
|
||
function torchx.recursiveTensorEq(t1, t2) | ||
if torch.type(t2) == 'table' then | ||
local isEqual = true | ||
if torch.type(t1) ~= 'table' then | ||
return false | ||
end | ||
for key,_ in pairs(t2) do | ||
isEqual = isEqual and torchx.recursiveTensorEq(t1[key], t2[key]) | ||
end | ||
return isEqual | ||
elseif torch.isTensor(t2) and torch.isTensor(t2) then | ||
local diff = t1-t2 | ||
local err = diff:abs():max() | ||
return err < 0.00001 | ||
else | ||
error("expecting nested tensors or tables. Got ".. | ||
torch.type(t1).." and "..torch.type(t2).." instead") | ||
end | ||
end | ||
|
||
function torchx.recursiveNormal(t2) | ||
if torch.type(t2) == 'table' then | ||
for key,_ in pairs(t2) do | ||
t2[key] = torchx.recursiveNormal(t2[key]) | ||
end | ||
elseif torch.isTensor(t2) then | ||
t2:normal() | ||
else | ||
error("expecting tensor or table thereof. Got " | ||
..torch.type(t2).." instead") | ||
end | ||
return t2 | ||
end | ||
|
||
function torchx.recursiveFill(t2, val) | ||
if torch.type(t2) == 'table' then | ||
for key,_ in pairs(t2) do | ||
t2[key] = torchx.recursiveFill(t2[key], val) | ||
end | ||
elseif torch.isTensor(t2) then | ||
t2:fill(val) | ||
else | ||
error("expecting tensor or table thereof. Got " | ||
..torch.type(t2).." instead") | ||
end | ||
return t2 | ||
end | ||
|
||
function torchx.recursiveType(param, type_str) | ||
if torch.type(param) == 'table' then | ||
for i = 1, #param do | ||
param[i] = torchx.recursiveType(param[i], type_str) | ||
end | ||
else | ||
if torch.typename(param) and | ||
torch.typename(param):find('torch%..+Tensor') then | ||
param = param:type(type_str) | ||
end | ||
end | ||
return param | ||
end | ||
|
||
function torchx.recursiveSum(t2) | ||
local sum = 0 | ||
if torch.type(t2) == 'table' then | ||
for key,_ in pairs(t2) do | ||
sum = sum + torchx.recursiveSum(t2[key], val) | ||
end | ||
elseif torch.isTensor(t2) then | ||
return t2:sum() | ||
else | ||
error("expecting tensor or table thereof. Got " | ||
..torch.type(t2).." instead") | ||
end | ||
return sum | ||
end | ||
|
||
function torchx.recursiveNew(t2) | ||
if torch.type(t2) == 'table' then | ||
local t1 = {} | ||
for key,_ in pairs(t2) do | ||
t1[key] = torchx.recursiveNew(t2[key]) | ||
end | ||
return t1 | ||
elseif torch.isTensor(t2) then | ||
return t2.new() | ||
else | ||
error("expecting tensor or table thereof. Got " | ||
..torch.type(t2).." instead") | ||
end | ||
end | ||
|
||
function torchx.recursiveIndex(res, src, dim, indices) | ||
if torch.type(src) == 'table' then | ||
res = (torch.type(res) == 'table') and res or {res} | ||
for key,_ in pairs(src) do | ||
res[key], res[key] = torchx.recursiveIndex(res[key], src[key], dim, indices) | ||
end | ||
elseif torch.isTensor(src) then | ||
res = torch.isTensor(res) or src.new() | ||
res:index(src, dim, indices) | ||
else | ||
error("expecting nested tensors or tables. Got ".. | ||
torch.type(res).." and "..torch.type(src).." instead") | ||
end | ||
return res, src | ||
end | ||
|
||
-- get the batch size (i.e. size of first dim for a nested tensor) | ||
function torchx.recursiveBatchSize(input) | ||
if torch.type(input) == 'table' then | ||
return torchx.recursiveBatchSize(input[1]) | ||
else | ||
assert(torch.isTensor(input)) | ||
return input:size(1) | ||
end | ||
end |