-
Notifications
You must be signed in to change notification settings - Fork 13
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6b7c3fb
commit 7eeb6ae
Showing
3 changed files
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
-- ref.: https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/ | ||
local AM = torch.class("torch.AliasMultinomial") | ||
|
||
function AM:__init(probs) | ||
self.J, self.q = self:setup(probs) | ||
end | ||
|
||
function AM:setup(probs) | ||
assert(probs:dim() == 1) | ||
local K = probs:nElement() | ||
local q = probs.new(K):zero() | ||
local J = torch.LongTensor(K):zero() | ||
|
||
-- Sort the data into the outcomes with probabilities | ||
-- that are larger and smaller than 1/K. | ||
local smaller, larger = {}, {} | ||
local maxk, maxp = 0, -1 | ||
for kk = 1,K do | ||
local prob = probs[kk] | ||
q[kk] = K*prob | ||
if q[kk] < 1 then | ||
table.insert(smaller, kk) | ||
else | ||
table.insert(larger, kk) | ||
end | ||
if maxk > maxp then | ||
|
||
end | ||
end | ||
|
||
-- Loop through and create little binary mixtures that | ||
-- appropriately allocate the larger outcomes over the | ||
-- overall uniform mixture. | ||
while #smaller > 0 and #larger > 0 do | ||
local small = table.remove(smaller) | ||
local large = table.remove(larger) | ||
|
||
J[small] = large | ||
q[large] = q[large] - (1.0 - q[small]) | ||
|
||
if q[large] < 1.0 then | ||
table.insert(smaller,large) | ||
else | ||
table.insert(larger,large) | ||
end | ||
end | ||
assert(q:min() >= 0) | ||
if q:max() > 1 then | ||
q:div(q:max()) | ||
end | ||
assert(q:max() <= 1) | ||
if J:min() <= 0 then | ||
-- sometimes an large index isn't added to J. | ||
-- fix it by making the probability 1 so that J isn't indexed. | ||
local i = 0 | ||
J:apply(function(x) | ||
i = i + 1 | ||
if x <= 0 then | ||
q[i] = 1 | ||
end | ||
end) | ||
end | ||
return J, q | ||
end | ||
|
||
function AM:draw() | ||
J = self.J | ||
q = self.q | ||
local K = J:nElement() | ||
|
||
-- Draw from the overall uniform mixture. | ||
local kk = math.random(1,K) | ||
|
||
-- Draw from the binary mixture, either keeping the | ||
-- small one, or choosing the associated larger one. | ||
if math.random() < q[kk] then | ||
return kk | ||
else | ||
return J[kk] | ||
end | ||
end | ||
|
||
function AM:batchdraw(output) | ||
assert(torch.type(output) == 'torch.LongTensor') | ||
assert(output:nElement() > 0) | ||
local J = self.J | ||
local K = J:nElement() | ||
|
||
self._kk = self._kk or output.new() | ||
self._kk:resizeAs(output):random(1,K) | ||
|
||
self._q = self._q or self.q.new() | ||
self._q:index(self.q, 1, self._kk:view(-1)) | ||
|
||
self._mask = self._b or torch.LongTensor() | ||
self._mask:resize(self._q:size()):bernoulli(self._q) | ||
|
||
self.__kk = self.__kk or output.new() | ||
self.__kk:resize(self._kk:size()):copy(self._kk) | ||
self.__kk:cmul(self._mask) | ||
|
||
-- if mask == 0 then output[i] = J[kk[i]] else output[i] = 0 | ||
|
||
self._mask:add(-1):mul(-1) -- (1,0) - > (0,1) | ||
output:view(-1):index(J, 1, self._kk:view(-1)) | ||
output:cmul(self._mask) | ||
|
||
-- elseif mask == 1 then output[i] = kk[i] | ||
|
||
output:add(self.__kk) | ||
|
||
return output | ||
end | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters