Skip to content

A curated collection of the best free machine learning courses, books, tutorials, and resources for learners at all levels.

License

Notifications You must be signed in to change notification settings

nova-cortex/awesome-ml-resources

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 

Repository files navigation

Free Machine Learning Resources Hub πŸ€–πŸ“š

A curated collection of the best free machine learning courses, books, tutorials, and resources for learners at all levels.

Awesome GitHub stars GitHub forks License: MIT

πŸ”’ Mathematics Foundation

Linear Algebra

  • Khan Academy Linear Algebra - Link

    • πŸ“– Comprehensive coverage of vectors, matrices, and transformations
    • ⏱️ ~40 hours of content
    • 🎯 Perfect for beginners
  • 3Blue1Brown Essence of Linear Algebra - Link

    • πŸ“– Visual intuition for linear algebra concepts
    • ⏱️ ~3 hours of animated explanations
    • 🎯 Ideal for visual learners

Statistics & Probability

  • Think Stats (Free eBook) - Link
    • πŸ“– Probability and statistics for programmers
    • πŸ’» Python-based examples
    • 🎯 Practical approach to statistics

Calculus

  • MIT OpenCourseWare Calculus - Link
    • πŸ“– Complete single-variable calculus course
    • πŸŽ₯ Video lectures + problem sets
    • 🎯 University-level rigor

πŸ’» Programming Prerequisites

Python

  • Python for Everybody - Link

    • πŸ“– Complete Python course by Dr. Chuck
    • πŸŽ₯ Video lectures + assignments
    • 🎯 Perfect for complete beginners
  • Automate the Boring Stuff - Link

    • πŸ“– Practical Python programming
    • πŸ’» Real-world examples
    • 🎯 Learn by doing

R

  • R for Data Science - Link
    • πŸ“– Complete guide to R for data analysis
    • πŸ’» Tidyverse ecosystem
    • 🎯 Data science focused

πŸ€– Machine Learning Courses

Beginner Level

  • Andrew Ng's Machine Learning Course - Link

    • πŸ“– The gold standard ML course
    • ⏱️ ~60 hours
    • 🎯 Mathematical foundations + practical implementation
    • πŸ’° Free audit available
  • MIT Introduction to Machine Learning - Link

    • πŸ“– Computational thinking approach
    • πŸŽ₯ Complete video lectures
    • 🎯 Theory + Python implementation

Intermediate Level

  • Fast.ai Practical Deep Learning - Link

    • πŸ“– Top-down approach to deep learning
    • πŸ’» Jupyter notebooks included
    • 🎯 Get building models quickly
  • CS229 Stanford Machine Learning - Link

    • πŸ“– Advanced mathematical treatment
    • πŸ“„ Comprehensive lecture notes
    • 🎯 Graduate-level depth

🧠 Deep Learning

Foundations

  • Deep Learning Specialization (Audit) - Link

    • πŸ“– 5-course specialization by Andrew Ng
    • πŸ’» TensorFlow implementations
    • 🎯 Comprehensive coverage
  • MIT 6.S191 Introduction to Deep Learning - Link

    • πŸ“– Modern deep learning techniques
    • πŸŽ₯ Annual updated content
    • 🎯 Cutting-edge research

Specialized Areas

  • CS231n: Convolutional Neural Networks - Link

    • πŸ“– Computer vision with deep learning
    • πŸ“„ Excellent lecture notes
    • 🎯 CNN architectures and applications
  • CS224n: Natural Language Processing - Link

    • πŸ“– NLP with deep learning
    • πŸŽ₯ Video lectures available
    • 🎯 Transformers and modern NLP

πŸ“– Books & eBooks

Free eBooks

  • The Elements of Statistical Learning - Link

    • πŸ“– Comprehensive statistical learning theory
    • 🎯 Advanced mathematical treatment
    • πŸ“„ 600+ pages of depth
  • Pattern Recognition and Machine Learning - Link

    • πŸ“– Bayesian approach to ML
    • 🎯 Theoretical foundations
    • πŸ“„ Classic textbook
  • An Introduction to Statistical Learning - Link

    • πŸ“– More accessible than ESL
    • πŸ’» R code examples
    • 🎯 Perfect for beginners

Open Source Books

  • Dive into Deep Learning - Link
    • πŸ“– Interactive deep learning book
    • πŸ’» Multiple framework implementations
    • 🎯 Theory meets practice

πŸ› οΈ Practical Projects

Beginner Projects

  • Titanic Survival Prediction - Link

    • πŸ“Š Classic beginner dataset
    • 🎯 Binary classification
    • πŸ’‘ Learn data preprocessing
  • House Price Prediction - Link

    • πŸ“Š Regression problem
    • 🎯 Feature engineering practice
    • πŸ’‘ Real estate domain

Advanced Projects

  • Build Your Own Neural Network - Link
    • πŸ’» Implement from scratch
    • 🎯 Understand backpropagation
    • πŸ’‘ Multiple language examples

πŸ—‚οΈ Datasets

General Purpose

  • UCI ML Repository - Link

    • πŸ“Š 500+ datasets
    • 🎯 Various domains and sizes
    • πŸ’‘ Well-documented
  • Kaggle Datasets - Link

    • πŸ“Š 50,000+ datasets
    • 🎯 Community-driven
    • πŸ’‘ Regular competitions

Domain-Specific

  • Computer Vision: CIFAR-10, ImageNet, COCO
  • NLP: Common Crawl, Wikipedia dumps, GLUE
  • Time Series: Yahoo Finance, Weather data, IoT sensors

πŸ”§ Tools & Frameworks

Python Libraries

  • Scikit-learn - General-purpose ML
  • TensorFlow/Keras - Deep learning
  • PyTorch - Research-focused DL
  • Pandas - Data manipulation
  • NumPy - Numerical computing
  • Matplotlib/Seaborn - Visualization

Cloud Platforms (Free Tiers)

  • Google Colab - Free GPU/TPU access
  • Kaggle Kernels - Free compute + datasets
  • Azure Notebooks - Microsoft's offering
  • AWS SageMaker - Limited free tier

πŸ“Ί YouTube Channels

  • 3Blue1Brown - Mathematical intuition
  • Two Minute Papers - Latest research summaries
  • Sentdex - Python ML tutorials
  • StatQuest - Statistics explained simply
  • Jeremy Howard - Fast.ai content

🎧 Podcasts

  • The TWIML AI Podcast - Industry interviews
  • Data Skeptic - Critical thinking in data
  • Linear Digressions - Accessible ML topics
  • Practical AI - Applied AI discussions

πŸ“„ Research Papers

Must-Read Papers

  • "Attention Is All You Need" - Transformer architecture
  • "ImageNet Classification with Deep CNNs" - AlexNet
  • "Generative Adversarial Networks" - GANs introduction
  • "BERT: Pre-training of Deep Bidirectional Transformers" - BERT

Paper Resources

  • Papers With Code - Link
  • ArXiv Sanity - Link
  • Distill.pub - Link

πŸ‘₯ Communities

Reddit

  • r/MachineLearning - Research discussions
  • r/LearnMachineLearning - Beginner-friendly
  • r/DataScience - Broader data science topics

Discord/Slack

  • ML Twitter - Active researcher community
  • Weights & Biases - MLOps community
  • Papers We Love - Paper discussions

Forums

  • Cross Validated - Statistics Q&A
  • Kaggle Forums - Competition discussions
  • Stack Overflow - Programming help

🀝 Contributing

We love contributions! Here's how you can help:

  1. Fork this repository
  2. Create a new branch (git checkout -b feature/amazing-resource)
  3. Add your resource following our format
  4. Commit your changes (git commit -m 'Add amazing ML resource')
  5. Push to the branch (git push origin feature/amazing-resource)
  6. Open a Pull Request

πŸ™ Acknowledgments

  • All the amazing educators who make their content freely available
  • The open-source community for building incredible tools

⭐ Star this repository if you find it helpful! πŸ”„ Fork it to create your own version! πŸ“’ Share it with others who might benefit!

About

A curated collection of the best free machine learning courses, books, tutorials, and resources for learners at all levels.

Topics

Resources

License

Stars

Watchers

Forks