Skip to content

SUMO simulation framework for mixed-autonomy traffic, featuring platoon string stability metrics and wave-dampening controllers.

Notifications You must be signed in to change notification settings

nsriad/FollowerStopper-String-Stability

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FollowerStopper String Stability

Simulation framework for evaluating string stability in mixed-autonomy traffic using the FollowerStopper controller.
This project integrates SUMO (Simulation of Urban MObility) with Python to analyze wave-dampening performance, headway stability, and autonomous vehicle behaviors across different road network types.


Features

  • Supports multiple network types: Ring, Straight, and Circular.
  • Mixed-autonomy simulation: Human-driven and autonomous vehicles in one environment.
  • String stability metrics: Headway, velocity amplification, spacing error analysis.
  • Customizable parameters: Reference speed, simulation duration, network topology.
  • Visualization tools: Automated plots of vehicle speeds and spacing over time.
  • Export utilities: Saves simulation data in .csv and figures in .pdf format.

Project Structure

FollowerStopper-String-Stability/
│
├── main.py                 # Main entry point for running simulations
├── controller/             # Route generation, vehicle config, simulation logic
├── analysis/               # Plotting scripts and data analysis notebooks
├── figures/                # Auto-generated plots
├── output/                 # Simulation results (CSV files)
├── sumo_config/            # SUMO network and route configuration files
└── requirements.txt        # Python dependencies (to be created)

Installation

1. Clone the Repository

git clone https://github.com/nsriad/FollowerStopper-String-Stability.git
cd FollowerStopper-String-Stability

2. Set up Python Environment

We recommend using Python 3.8+ and virtualenv:

python -m venv venv
source venv/bin/activate   # On Windows: venv\Scripts\activate
pip install -r requirements.txt

3. Install SUMO

  • Download SUMO and add it to your system PATH.
  • Ensure sumo and sumo-gui commands work in your terminal.

Usage

Run a simulation from the project root:

python main.py

Key parameters in main.py:

  • network_type: ring, straight, or circular
  • ref_speed: Desired reference speed (m/s)
  • interrupt_time: Simulation duration (seconds)
  • freq: Sampling frequency (Hz)

Simulation generates:

  • Plotsfigures/<network_type>/
  • CSV Dataoutput/<network_type>/

Example Output

After running:

python main.py

You will find:

  • Vehicle speed plots: figures/<network_type>/...pdf
  • Simulation data: output/<network_type>/...csv

Dependencies

To be listed in requirements.txt:

traci
sumolib
matplotlib
numpy
pandas

Citation

Will be added later after publication.


---

## License
This project is released under the MIT License.

About

SUMO simulation framework for mixed-autonomy traffic, featuring platoon string stability metrics and wave-dampening controllers.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •