Skip to content

For SNIC project in DPNM. Will be using in log anomaly detection

Notifications You must be signed in to change notification settings

obiwan96/LogEventParsing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Log Event Parser for Anomaly Detection

Requirements (python3.7)

p4ml> pip install -r requirements.txt
p4ml> pip install torch torchvision torchaudio tensorboard transformers pytest pandas nltk

This is a part of DPNM-SNIC project for log anaomaly detection.

We will use log event parser to detect anomaly logs in logs.

 - log_parser_lib.py 
    : have functions for parsing
 - check_sent_sim.py
    : check sentence similarity of parsed event form based on Sentence BERT. Just my curiosity. Not related to SNIC project
 - event_FSA.py
    : Build dictionary, event list and FSA. Save in 'data.pkl'
 - event_LSTM.py
    : Seperate train and test data, train the LSTM model. use PyTorch
 - test_LSTM.py
    : train the LSTM model for 500 epoch changing input window size
 - read_and_save_log.py
    : read logs and combine logs to 'all.log'
 - AD_module.py
    : AB based Anomaly Detection Module
 - module_test.py
    : Test the AB based Anomaly Detection Module
 - LogNetconfAD_lib.py
    : Log and NETCONF based AD Module
 - AD_with_TF.py
    : Test the Log and NETCONF based AD Module
 - tf-idf ~ .ipynb
    : Log-TF-IDF based AD experiments file

ex)

p4ml> python3 AD_module.py 

>>> reading 02_21_overloaded.log file... <<<
-----------------------------------------
transition from q11 to q134 does not exist in FSA!
Prev: Feb 21 00:04:22PVIDB: Attribute 'cosd.support_xellent_qfx_feature' not present in Db
Now: Feb 21 00:04:22feature cos_fc_defaults num elems 4 rc 0
-----------------------------------------
transition from q134 to q11 does not exist in FSA!
Prev: Feb 21 00:04:22feature cos_fc_defaults num elems 4 rc 0
Now: Feb 21 00:04:22PVIDB: Attribute 'cosd.support_xellent_qfx_feature' not present in Db
----------------------------------
LSTM model detects abnormal log continuosly :
Feb 21 05:28:03UI_CHILD_STATUS: Cleanup child '/usr/bin/netstat', PID 2937, status 0

next image is example of our FSA.

FSA example

About

For SNIC project in DPNM. Will be using in log anomaly detection

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published