https://huggingface.co/deepseek-ai/Janus-1.3B with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @huggingface/transformers

Example: Image+text to text

import { AutoProcessor, MultiModalityCausalLM } from "@huggingface/transformers";

// Load processor and model
const model_id = "onnx-community/Janus-1.3B-ONNX";
const processor = await AutoProcessor.from_pretrained(model_id);
const model = await MultiModalityCausalLM.from_pretrained(model_id);

// Prepare inputs
const conversation = [
  {
    role: "User",
    content: "<image_placeholder>\nConvert the formula into latex code.",
    images: ["https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/quadratic_formula.png"],
  },
];
const inputs = await processor(conversation);

// Generate response
const outputs = await model.generate({
  ...inputs,
  max_new_tokens: 150,
  do_sample: false,
});

// Decode output
const new_tokens = outputs.slice(null, [inputs.input_ids.dims.at(-1), null]);
const decoded = processor.batch_decode(new_tokens, { skip_special_tokens: true });
console.log(decoded[0]);

Sample output:

Sure, here is the LaTeX code for the given formula:

```
x = \frac{-b \pm \sqrt{b^2 - 4a c}}{2a}
```

This code represents the mathematical expression for the variable \( x \).

Example: Text to image

import { AutoProcessor, MultiModalityCausalLM } from "@huggingface/transformers";

// Load processor and model
const model_id = "onnx-community/Janus-1.3B-ONNX";
const processor = await AutoProcessor.from_pretrained(model_id);
const model = await MultiModalityCausalLM.from_pretrained(model_id);

// Prepare inputs
const conversation = [
  {
    role: "User",
    content: "A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.",
  },
];
const inputs = await processor(conversation, { chat_template: "text_to_image" });

// Generate response
const num_image_tokens = processor.num_image_tokens;
const outputs = await model.generate_images({
  ...inputs,
  min_new_tokens: num_image_tokens,
  max_new_tokens: num_image_tokens,
  do_sample: true,
});

// Save the generated image
await outputs[0].save("test.png");

Sample outputs:

image/png image/png image/png image/png
image/png image/png image/png image/png

Want to play around with the model? Check out the online WebGPU demo.

Downloads last month
220
Inference API
Inference API (serverless) does not yet support transformers.js models for this pipeline type.

Model tree for onnx-community/Janus-1.3B-ONNX

Quantized
(1)
this model

Spaces using onnx-community/Janus-1.3B-ONNX 2