-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Introduce zfs rewrite subcommand #17246
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Conversation
I've tried to find some kernel APIs to wire this to, but found that plenty of Linux file systems each implement their own IOCTL's for similar purposes. I did the same, except the IOCTL number I took almost arbitrary, since ZFS seems quite rough in this area. I am open to any better ideas before this is committed. |
This looks amazing! Not having to sift through half a dozen shell scripts every time this comes up to see what currently handles the most edge cases correctly is very much appreciated. Especially with RaidZ expansion, being able to direct users to run a built-in command instead of debating what script to send them to would be very nice. Also being able to reliably rewrite a live dataset while it's in use without having to worry about skipped files or mtime conflicts would make the whole process much less of a hassle. With the only thing to really worry about being snapshots/space usage this seems as close to perfect as reasonably possible (without diving deep into internals and messing with snapshot immutability). Bravo! |
This allows to rewrite content of specified file(s) as-is without modifications, but at a different location, compression, checksum, dedup, copies and other parameter values. It is faster than read plus write, since it does not require data copying to user-space. It is also faster for sync=always datasets, since without data modification it does not require ZIL writing. Also since it is protected by normal range range locks, it can be done under any other load. Also it does not affect file's modification time or other properties. Signed-off-by: Alexander Motin <[email protected]> Sponsored by: iXsystems, Inc.
thank you. Fixes one of the biggest problems with ZFS. Is there a way to suspend the process? It might be nice to have it run only during off hours. |
It does one file at a time, and should be killable in between. Signal handling within one huge file can probably be added. Though the question of the process restart is on the user. I didn't plan to go that deep into the area within this PR. |
I couldn't find documentation in the files changed, so I have to guess how it actually works. Is it a file at a time? I guess you could feed it with a "find" command. For a system with a billion files, do you have a sense how long this is gong to take? We can do scrubs in a day or two, but rsync is impractically slow. If this is happening at the file system level, that migth be the case here as well. |
This will likely be a good use case for GNU Parallel. |
It can take a directory as an argument and there are some recursive functions and iterators in the code so piping find into it should not be necessary. That avoids some userspace file handling overhead, but it still has to go through the contents of each directory one file at a time. I also don't see any parallel execution or threading (though I'm not too familiar with ZFS internals, maybe some of the primitives used here run asynchronously?). Whether doing parallelism in userspace by just calling it for many files/directories at once or not it should have the required locking to just run in the background and be significantly more elegant than the CP + mtime (or potentially userspace hash) check to make sure files didn't change during the copy process avoiding one of the potential pitfalls of existing solutions. |
I haven't benchmarked it deep yet, but unless the files are tiny, I don't expect there is a major need for parallelism. The code in kernel should handle up to 16MB at a time, plus allows ZFS to do read-ahead and write-back on top of that, so there will be quite a lot in the pipeline to saturate the disks and/or the system, especially if there is some compression/checksuming/encryption. And without need to copy data to/from user-space, the only thread will not be doing too much, I think mostly a decompression from ARC. Bunch of small files on a wide HDD pool I suspect may indeed suffer from read latency, but that in user-space we can optimize/parallelize all day long. |
I gave this a quick test. It's very fast and does exactly what it says 👍
I can already see people writing scripts that go though every dataset, setting the optimal compression, recordsize, etc, and zfs rewrite-ing them. |
Cool! Though the recordsize is one of things it can't change, since it would requite real byte-level copy, not just marking existing blocks dirty. I am not sure it can be done under the load in general. At least it would be much more complicated. |
Motivation and Context
For years users were asking for an ability to re-balance pool after vdev addition, de-fragment randomly written files, change some properties for already written files, etc. The closest option would be to either copy and rename a file or send/receive/rename the dataset. Unfortunately all of those options have some downsides.
Description
This change introduces new
zfs rewrite
subcommand, that allows to rewrite content of specified file(s) as-is without modifications, but at a different location, compression, checksum, dedup, copies and other parameter values. It is faster than read plus write, since it does not require data copying to user-space. It is also faster for sync=always datasets, since without data modification it does not require ZIL writing. Also since it is protected by normal range range locks, it can be done under any other load. Also it does not affect file's modification time or other properties.How Has This Been Tested?
Manually tested it on FreeBSD. Linux-specific code is not yet tested.
Types of changes
Checklist:
Signed-off-by
.