Multimodal πΌοΈ > ByteDance released SA2VA: a family of vision LMs that can take image, video, text and visual prompts > moondream2 is out with new capabilities like outputting structured data and gaze detection! > Dataset: Alibaba DAMO lab released multimodal textbook β 22k hours worth of samples from instruction videos π€― > Dataset: SciCap captioning on scientific documents benchmark dataset is released along with the challenge!
Embeddings π > @MoritzLaurer released zero-shot version of ModernBERT large π > KaLM is a new family of performant multilingual embedding models with MIT license built using Qwen2-0.5B
Image/Video Generation β―οΈ > NVIDIA released Cosmos, a new family of diffusion/autoregressive World Foundation Models generating worlds from images, videos and texts π₯ > Adobe released TransPixar: a new text-to-video model that can generate assets with transparent backgrounds (a first!) > Dataset: fal released cosmos-openvid-1m Cosmos-tokenized OpenVid-1M with samples from OpenVid-1M
Others > Prior Labs released TabPFNv2, the best tabular transformer is out for classification and regression > Metagene-1 is a new RNA language model that can be used for pathogen detection, zero-shot embedding and genome understanding
> The models are capable of tasks involving vision-language understanding and visual referrals (referring segmentation) both for images and videos β―οΈ
> The models come in 1B, 4B and 8B and are based on InternVL2.5 for base architecture and Qwen2, Qwen2.5 and InternLM2 for language model part (depending on the checkpoint)
> The model is very interesting, it has different encoders for different modalities each (visual prompt, text prompt, image and video) then it concatenates these to feed into LLM π¬
the output segmentation tokens are passed to SAM2, to sort of match text (captions or semantic classes) to masks ‡οΈ
> Their annotation pipeline is also interesting, they seems to use two open large vision LMs to refine the annotations, and have different levels of descriptions to provide consistency.
The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work β―οΈ
Try the demo for best setup here https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B they evaluate sampling strategies, scaling laws for models and datasets, video representation and more! > The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled π scaling dataset has diminishing returns for smaller models > They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal > They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2 they find google/siglip-so400m-patch14-384 to be most powerful π₯ > they also compare freezing different parts of models, training all stages with some frozen parts give the best yield
They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models π₯
Multimodal πΌοΈ > Google shipped a PaliGemma 2, new iteration of PaliGemma with more sizes: 3B, 10B and 28B, with pre-trained and captioning variants π > OpenGVLab released InternVL2, seven new vision LMs in different sizes, with sota checkpoint with MIT license β¨ > Qwen team at Alibaba released the base models of Qwen2VL models with 2B, 7B and 72B ckpts
LLMs π¬ > Meta released a new iteration of Llama 70B, Llama3.2-70B trained further > EuroLLM-9B-Instruct is a new multilingual LLM for European languages with Apache 2.0 license π₯ > Dataset: CohereForAI released GlobalMMLU, multilingual version of MMLU with 42 languages with Apache 2.0 license > Dataset: QwQ-LongCoT-130K is a new dataset to train reasoning models > Dataset: FineWeb2 just landed with multilinguality update! π₯ nearly 8TB pretraining data in many languages!
Image/Video Generation πΌοΈ > Tencent released HunyuanVideo, a new photorealistic video generation model > OminiControl is a new editing/control framework for image generation models like Flux
Audio π > Indic-Parler-TTS is a new text2speech model made by community
New InternVL drop with a state-of-the-art 78B vision language model with MIT license π₯ https://huggingface.co/collections/OpenGVLab/internvl-25-673e1019b66e2218f68d7c1c The release comes with seven new vision LMs based on InternViT 300M/6B and Qwen2.5 (0.5B, 3B, 32B, 72B) and InternLM2 (8B, 7B, 20B) in different sizes 78B model is of InternViT 6B and Qwen2.5-72B Instruct, can accomplish variety of tasks π Try here OpenGVLab/InternVL
small but mighty π₯ you can fine-tune SmolVLM on an L4 with batch size of 4 and it will only take 16.4 GB VRAM π«°π» also with gradient accumulation simulated batch size is 16 β¨ I made a notebook that includes all the goodies: QLoRA, gradient accumulation, gradient checkpointing with explanations on how they work π https://github.com/huggingface/smollm/blob/main/finetuning/Smol_VLM_FT.ipynb
πΌοΈ Multimodal > At Hugging Face we released SmolVLM, a performant and efficient smol vision language model π > Show Lab released ShowUI-2B: new vision-language-action model to build GUI/web automation agents π€ > Rhymes AI has released the base model of Aria: Aria-Base-64K and Aria-Base-8K with their respective context length > ViDoRe team released ColSmolVLM: A new ColPali-like retrieval model based on SmolVLM > Dataset: Llava-CoT-o1-Instruct: new dataset labelled using Llava-CoT multimodal reasoning modelπ > Dataset: LLaVA-CoT-100k dataset used to train Llava-CoT released by creators of Llava-CoT π
π¬ LLMs > Qwen team released QwQ-32B-Preview, state-of-the-art open-source reasoning model, broke the internet π₯ > AliBaba has released Marco-o1, a new open-source reasoning model π₯ > NVIDIA released Hymba 1.5B Base and Instruct, the new state-of-the-art SLMs with hybrid architecture (Mamba + transformer)
β―οΈ Image/Video Generation > Qwen2VL-Flux: new image generation model based on Qwen2VL image encoder, T5 and Flux for generation > Lightricks released LTX-Video, a new DiT-based video generation model that can generate 24 FPS videos at 768x512 res β―οΈ > Dataset: Image Preferences is a new image generation preference dataset made with DIBT community effort of Argilla π·οΈ
Audio > OuteAI released OuteTTS-0.2-500M new multilingual text-to-speech model based on Qwen-2.5-0.5B trained on 5B audio prompt tokens
What a week! A recap for everything you missed βοΈ merve/nov-22-releases-673fbbcfc1c97c4f411def07 Multimodal β¨ > Mistral AI released Pixtral 124B, a gigantic open vision language model > Llava-CoT (formerly known as Llava-o1) was released, a multimodal reproduction of o1 model by PKU > OpenGVLab released MMPR: a new multimodal reasoning dataset > Jina has released Jina-CLIP-v2 0.98B multilingual multimodal embeddings > Apple released new SotA vision encoders AIMv2
LLMs π¦ > AllenAI dropped a huge release of models, datasets and scripts for TΓΌlu, a family of models based on Llama 3.1 aligned with SFT, DPO and a new technique they have developed called RLVR > Jina has released embeddings-v3: new multilingual embeddings with longer context > Hugging Face released SmolTalk: synthetic dataset used to align SmolLM2 using supervised fine-tuning > Microsoft released orca-agentinstruct-1M-v1: a gigantic instruction dataset of 1M synthetic instruction pairs
Image Generation πΌοΈ > Black Forest Labs released Flux 1. tools: four new models for different image modifications and two LoRAs to do image conditioning and better steer generations
Lastly Hugging Face released a new library Observers: a lightweight SDK for monitoring interactions with AI APIs and easily store and browse them π $ pip install observers
Apple released AIMv2 π a family of state-of-the-art open-set vision encoders apple/aimv2-6720fe1558d94c7805f7688c > like CLIP, but add a decoder and train on autoregression π€― > 19 open models come in 300M, 600M, 1.2B, 2.7B with resolutions of 224, 336, 448 > Load and use with π€ transformers