Skip to content

outerbounds/min-obproject

Repository files navigation

min-obproject

Reusable Outerbounds flow templates. Demonstrates how to build ML projects with complex configurations in an extensible way.

Quick Start

# 1. Install editable package
curl -LsSf https://astral.sh/uv/install.sh | sh
uv pip install -e .

# 2. Run example flow locally
python flows/02-projectflow-inheritance/flow.py run --lr 0.5

# 3. Run on Kubernetes (requires `@pypi` or `@pypi_base` uncommented + published to PyPI)
python flows/02-projectflow-inheritance/flow.py --environment=fast-bakery run --with kubernetes --lr 0.5

Key Features

  • Base flow + configs with overrides: NeuralNetworkFlow template automatically loads a standard config.json expected to be present for each inheriting flow. Override specific config values via CLI Parameters without flow boilerplate.
  • Reusable templates: Write the flow logic once, inherit across flows and projects.
  • Fast changing and consistent dependencies: Toggle @pypi for local dev (editable install) vs. remote (PyPI install).

The @pypi_base Toggle Pattern

Core concept: Comment/uncomment one decorator to switch between local and remote execution.

Important: @pypi or @pypi_base requires --environment=fast-bakery flag. Local runs without the decorator don't need this flag.

Local development (decorator commented out):

# @pypi_base(packages={"min-obproject": ""})
class MyFlow(ProjectFlow, NeuralNetworkFlow):
    ...
  • Uses editable install from uv pip install -e .
  • Faster iteration, no publishing required --> comment out @pypi_base in the workflows since we don't want to reinstall.
  • Avoids platform-specific wheel issues with @pypi on workstation environment that doesn't match prod (e.g., mac vs linux).

Remote execution (decorator uncommented + --environment=fast-bakery):

@pypi_base(packages={"min-obproject": ""})  # "" = latest, or pin a la "0.1.1"
class MyFlow(ProjectFlow, NeuralNetworkFlow):
    ...
  • Installs from PyPI in remote containers
  • Requires package published to PyPI, as demonstrated with uv publish in this document
  • Use "" for latest or pin to specific version for stability
  • --environment=fast-bakery enables @pypi or @pypi_base decorator

Repository Structure

min-obproject/
├── src/
│   └── flow_templates.py         # NeuralNetworkFlow base template
├── flows/
│   ├── 01-config-override/       # Basic config + parameter override
│   └── 02-projectflow-inheritance/ # Template inheritance example
├── pyproject.toml
└── obproject.toml

Example Flows

Flow 1: Config Override (01-config-override/)

Basic pattern showing config loading and parameter overrides.

from metaflow import FlowSpec, step, Config, Parameter

class ConfigOverrideFlow(FlowSpec):
    base_config = Config("config", default="config.json")
    lr = Parameter('lr', default=None, type=float)
    
    def _resolve_config(self):
        train_args = dict(self.base_config['train_args'])
        if self.lr:
            train_args['lr'] = self.lr
        self.config = train_args
    
    @step
    def start(self):
        self._resolve_config()
        print(f"Config: {self.config}")
        self.next(self.end)
    
    @step
    def end(self):
        pass

Run:

python flows/01-config-override/flow.py run --lr 0.01

Flow 2: Template Inheritance (02-projectflow-inheritance/)

Reuses NeuralNetworkFlow template - no need to redefine config logic.

from metaflow import step, pypi_base
from obproject import ProjectFlow
from src.flow_templates import NeuralNetworkFlow

# Toggle for local/remote execution
# @pypi_base(packages={"min-obproject": ""})
class CustomizedTrainingFlow(ProjectFlow, NeuralNetworkFlow):

    @pypi(packages={"min-obproject": "0.1.0"})
    @step
    def start(self):
        self._resolve_nn_config()  # Inherited method
        self.next(self.end)
    
    @step
    def end(self):
        print(f"Config: {self.config}")

config.json (same directory as flow):

{
    "train_args": {
        "lr": 0.001,
        "optimizer": "lbfgs"
    }
}

Run:

# Local
python flows/02-projectflow-inheritance/flow.py run --lr 1.2

# Remote (uncomment @pypi_base first)
python flows/02-projectflow-inheritance/flow.py --environment=fast-bakery run --with kubernetes --lr 1.2

Publishing for Remote Execution

When you need to run on Kubernetes/AWS Batch:

# Build and publish
uv build
uv publish

# Or test PyPI first
uv publish --publish-url https://test.pypi.org/legacy/

Then uncomment @pypi_base in your flow and run with --environment=fast-bakery run --with kubernetes.

Deploy to Argo Workflows

# Ensure @pypi_base is uncommented, then:
python flows/02-projectflow-inheritance/flow.py --environment=fast-bakery argo-workflows create

Trigger from Outerbounds UI after overriding learning rate -> CustomizedTrainingFlow will launch a new run.

Benefits of This Pattern

  1. Complex configs - Manage hundreds of parameters via JSON files
  2. Selective overrides - Change specific params via CLI without modifying flows
  3. Centralized logic - Write config resolution once in NeuralNetworkFlow, inherit everywhere
  4. No boilerplate - Flows that inherit the template get config handling for free

Requirements

  • Python 3.12
  • uv pip install -e . for local development
  • Published to PyPI for remote execution

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages