Skip to content

merge sdxl branch #37

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions prompt_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,10 @@ class PromptEmbedsXL:
text_embeds: torch.FloatTensor
pooled_embeds: torch.FloatTensor

def __init__(self, *args) -> None:
self.text_embeds = args[0]
self.pooled_embeds = args[1]
def __init__(
self, text_embeds_pair: tuple[torch.FloatTensor, torch.FloatTensor]
) -> None:
self.text_embeds, self.pooled_embeds = text_embeds_pair


# SDv1.x, SDv2.x は FloatTensor、XL は PromptEmbedsXL
Expand Down
14 changes: 9 additions & 5 deletions train_lora_xl.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,8 @@ def train(
prompts: list[PromptSettings],
):
metadata = {
"prompts": ",".join([prompt.json() for prompt in prompts]),
"config": config.json(),
"prompts": ",".join([prompt.model_dump_json() for prompt in prompts]),
"config": config.model_dump_json(),
}
save_path = Path(config.save.path)

Expand Down Expand Up @@ -76,8 +76,10 @@ def train(
text_encoder.eval()

unet.to(DEVICE_CUDA, dtype=weight_dtype)

if config.other.use_xformers:
unet.enable_xformers_memory_efficient_attention()

unet.requires_grad_(False)
unet.eval()

Expand All @@ -90,15 +92,17 @@ def train(
).to(DEVICE_CUDA, dtype=weight_dtype)

optimizer_module = train_util.get_optimizer(config.train.optimizer)
#optimizer_args
# optimizer_args
optimizer_kwargs = {}
if config.train.optimizer_args is not None and len(config.train.optimizer_args) > 0:
for arg in config.train.optimizer_args.split(" "):
key, value = arg.split("=")
value = ast.literal_eval(value)
optimizer_kwargs[key] = value

optimizer = optimizer_module(network.prepare_optimizer_params(), lr=config.train.lr, **optimizer_kwargs)

optimizer = optimizer_module(
network.prepare_optimizer_params(), lr=config.train.lr, **optimizer_kwargs
)
lr_scheduler = train_util.get_lr_scheduler(
config.train.lr_scheduler,
optimizer,
Expand Down
20 changes: 10 additions & 10 deletions train_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@


def get_random_noise(
batch_size: int, height: int, width: int, generator: torch.Generator = None
batch_size: int, height: int, width: int, generator: torch.Generator | None = None
) -> torch.Tensor:
return torch.randn(
(
Expand Down Expand Up @@ -46,13 +46,13 @@ def get_initial_latents(
height: int,
width: int,
n_prompts: int,
generator=None,
generator: torch.Generator | None = None,
) -> torch.Tensor:
noise = get_random_noise(n_imgs, height, width, generator=generator).repeat(
n_prompts, 1, 1, 1
)

latents = noise * scheduler.init_noise_sigma
latents = noise * scheduler.init_noise_sigma.to(noise.device)

return latents

Expand Down Expand Up @@ -222,8 +222,8 @@ def predict_noise_xl(
text_embeddings: torch.FloatTensor, # uncond な text embed と cond な text embed を結合したもの
add_text_embeddings: torch.FloatTensor, # pooled なやつ
add_time_ids: torch.FloatTensor,
guidance_scale=7.5,
guidance_rescale=0.7,
guidance_scale: float = 7.5,
guidance_rescale: float = 0.0,
) -> torch.FloatTensor:
# expand the latents if we are doing classifier-free guidance to avoid doing two forward passes.
latent_model_input = torch.cat([latents] * 2)
Expand All @@ -250,9 +250,10 @@ def predict_noise_xl(
)

# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
noise_pred = rescale_noise_cfg(
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
)
if guidance_rescale > 0.0:
guided_target = rescale_noise_cfg(
guided_target, noise_pred_text, guidance_rescale=guidance_rescale
)

return guided_target

Expand Down Expand Up @@ -281,7 +282,6 @@ def diffusion_xl(
add_text_embeddings,
add_time_ids,
guidance_scale=guidance_scale,
guidance_rescale=0.7,
)

# compute the previous noisy sample x_t -> x_t-1
Expand Down Expand Up @@ -364,7 +364,7 @@ def get_optimizer(name: str):
return Lion
elif name == "prodigy":
import prodigyopt

return prodigyopt.Prodigy
else:
raise ValueError("Optimizer must be adam, adamw, lion or Prodigy")
Expand Down