Skip to content

panakino/fbpconv_tf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FBPConvNet - tensorflow

http://ieeexplore.ieee.org/document/7949028/

This is tensorflow implementation for Deep Convolutional Neural Network for Inverse Problems in Imaging, TIP (2017).

  • applications (forward model with shift-invariant normal operator):
  • 2D sparse-view CT reconstruction
  • reconstruction of accelerated MRI
  • Deconvolution of shift-invariant

Whole codes are forked and modified from https://github.com/jakeret/tf_unet.

Training configuration

  • Tensorflow 1.1.0
  • 1 or 2 GPUs (TITAN X pascal arch.)
  • MacOS X 10.12.6
  • Python 2.7.12

Data - XYCN format (ellipsoids, downsampling factor : x 20)

illustration

alt tag

Commands

Before starting,

pip install pillow matplotlib scipy scikit-image h5py

To start training a model for FBPConvNet:

python main.py --lr=1e-4 --output_path='logs/' --train_path='train_data/*.mat' --test_path='test_data/*.mat' --features_root=32 --layers=5 

To deploy trained model:

python main.py --lr=1e-4 --output_path='logs/' --train_path='train_data/*.mat' --test_path='test_data/*.mat' --features_root=32 --layers=5 --is_training=False

You may find more details in main.py.

Contact

[email protected]

About

tensorflow implementation for FBPConvNet

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages