http://ieeexplore.ieee.org/document/7949028/
This is tensorflow implementation for Deep Convolutional Neural Network for Inverse Problems in Imaging, TIP (2017)
.
- applications (forward model with shift-invariant normal operator):
- 2D sparse-view CT reconstruction
- reconstruction of accelerated MRI
- Deconvolution of shift-invariant
Whole codes are forked and modified from https://github.com/jakeret/tf_unet.
- Tensorflow 1.1.0
- 1 or 2 GPUs (TITAN X pascal arch.)
- MacOS X 10.12.6
- Python 2.7.12
- train : https://drive.google.com/open?id=1FTOgM2vOQaGSokEDtOaPNdBTto6h5yFi
- test : https://drive.google.com/open?id=1w_kPao6L2UwhTKIgcr_3o62A6vYYtX_r
- If you want to make fbp images, you can find file_generator in tf_unet/layers.py (load_whole_data function.)
Before starting,
pip install pillow matplotlib scipy scikit-image h5py
To start training a model for FBPConvNet:
python main.py --lr=1e-4 --output_path='logs/' --train_path='train_data/*.mat' --test_path='test_data/*.mat' --features_root=32 --layers=5
To deploy trained model:
python main.py --lr=1e-4 --output_path='logs/' --train_path='train_data/*.mat' --test_path='test_data/*.mat' --features_root=32 --layers=5 --is_training=False
You may find more details in main.py.