Skip to content
/ lte Public
forked from jaewon-lee-b/lte

Local Texture Estimator for Implicit Representation Function, in CVPR 2022

License

Notifications You must be signed in to change notification settings

panakino/lte

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LTE

This repository contains the official implementation for LTE introduced in the following paper:

Local Texture Estimator for Implicit Representation Function (CVPR 2022)

Quick Start

  1. Download a pre-trained model.
Model Download
EDSR-baseline-LTE Google Drive
EDSR-baseline-LTE+ Google Drive
RDN-LTE Google Drive
SwinIR-LTE Google Drive
  1. Reproduce Experiments

Table 1: EDSR-baseline-LTE: bash ./scripts/test-div2k.sh ./save/edsr-baseline-lte.pth 0

Table 1: RDN-LTE: bash ./scripts/test-div2k.sh ./save/rdn-lte.pth 0

Table 1: SwinIR-LTE: bash ./scripts/test-div2k-swin.sh ./save/swinir-lte.pth 8 0

Table 2: RDN-LTE: bash ./scripts/test-benchmark.sh ./save/rdn-lte.pth 0

Table 2: SwinIR-LTE: bash ./scripts/test-benchmark-swin.sh ./save/swinir-lte.pth 8 0

Train & Test

[EDSR-baseline-LTE]

Train: python train.py --config configs/train-div2k/train_edsr-baseline-lte.yaml --gpu 0

Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_edsr-baseline-lte/epoch-last.pth --gpu 0

[EDSR-baseline-LTE+]

Train: python train.py --config configs/train-div2k/train_edsr-baseline-lte-fast.yaml --gpu 0

Test: python test.py --config configs/test/test-fast-div2k-2.yaml --fast True --model save/_train_edsr-baseline-lte-fast/epoch-last.pth --gpu 0

[RDN-LTE]

Train: python train.py --config configs/train-div2k/rdn-lte.yaml --gpu 0,1

Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_rdn-lte/epoch-last.pth --gpu 0

[SwinIR-LTE]

Train: python train.py --config configs/train-div2k/swinir-lte.yaml --gpu 0,1,2,3

Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_swinir-lte/epoch-last.pth --window 8 --gpu 0

Model Training time (# GPU)
EDSR-baseline-LTE 21h (1 GPU)
RDN-LTE 82h (2 GPU)
SwinIR-LTE 75h (4 GPU)

We use NVIDIA RTX 3090 24GB for training.

About

Local Texture Estimator for Implicit Representation Function, in CVPR 2022

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 91.8%
  • Shell 8.2%