This repository contains the official implementation for LTE introduced in the following paper:
Local Texture Estimator for Implicit Representation Function (CVPR 2022)
- Download a pre-trained model.
Model | Download |
---|---|
EDSR-baseline-LTE | Google Drive |
EDSR-baseline-LTE+ | Google Drive |
RDN-LTE | Google Drive |
SwinIR-LTE | Google Drive |
- Reproduce Experiments
Table 1: EDSR-baseline-LTE: bash ./scripts/test-div2k.sh ./save/edsr-baseline-lte.pth 0
Table 1: RDN-LTE: bash ./scripts/test-div2k.sh ./save/rdn-lte.pth 0
Table 1: SwinIR-LTE: bash ./scripts/test-div2k-swin.sh ./save/swinir-lte.pth 8 0
Table 2: RDN-LTE: bash ./scripts/test-benchmark.sh ./save/rdn-lte.pth 0
Table 2: SwinIR-LTE: bash ./scripts/test-benchmark-swin.sh ./save/swinir-lte.pth 8 0
Train: python train.py --config configs/train-div2k/train_edsr-baseline-lte.yaml --gpu 0
Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_edsr-baseline-lte/epoch-last.pth --gpu 0
Train: python train.py --config configs/train-div2k/train_edsr-baseline-lte-fast.yaml --gpu 0
Test: python test.py --config configs/test/test-fast-div2k-2.yaml --fast True --model save/_train_edsr-baseline-lte-fast/epoch-last.pth --gpu 0
Train: python train.py --config configs/train-div2k/rdn-lte.yaml --gpu 0,1
Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_rdn-lte/epoch-last.pth --gpu 0
Train: python train.py --config configs/train-div2k/swinir-lte.yaml --gpu 0,1,2,3
Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_swinir-lte/epoch-last.pth --window 8 --gpu 0
Model | Training time (# GPU) |
---|---|
EDSR-baseline-LTE | 21h (1 GPU) |
RDN-LTE | 82h (2 GPU) |
SwinIR-LTE | 75h (4 GPU) |
We use NVIDIA RTX 3090 24GB for training.