Skip to content

Commit

Permalink
Update lab-09-3-xor-nn-wide-deep.py (hunkim#238)
Browse files Browse the repository at this point in the history
* Update lab-09-3-xor-nn-wide-deep.py

Removed unnecessary codes.

* Update lab-09-3-xor-nn-wide-deep.py

Add numpy again.

* Update lab-09-3-xor-nn-wide-deep.py

Add numpy again.

* Update lab-09-3-xor-nn-wide-deep.py

Co-Authored-By: qoocrab <[email protected]>

* Update lab-09-3-xor-nn-wide-deep.py

Co-Authored-By: qoocrab <[email protected]>
  • Loading branch information
qoocrab authored and kkweon committed Jan 14, 2019
1 parent c644f04 commit 4af45b7
Showing 1 changed file with 9 additions and 20 deletions.
29 changes: 9 additions & 20 deletions lab-09-3-xor-nn-wide-deep.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,18 +3,9 @@
import numpy as np

tf.set_random_seed(777) # for reproducibility
learning_rate = 0.1

x_data = [[0, 0],
[0, 1],
[1, 0],
[1, 1]]
y_data = [[0],
[1],
[1],
[0]]
x_data = np.array(x_data, dtype=np.float32)
y_data = np.array(y_data, dtype=np.float32)
x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)

X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
Expand All @@ -36,10 +27,8 @@
hypothesis = tf.sigmoid(tf.matmul(layer3, W4) + b4)

# cost/loss function
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
tf.log(1 - hypothesis))

train = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(cost)
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis))
train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)

# Accuracy computation
# True if hypothesis>0.5 else False
Expand All @@ -52,14 +41,14 @@
sess.run(tf.global_variables_initializer())

for step in range(10001):
sess.run(train, feed_dict={X: x_data, Y: y_data})
_, cost_val = sess.run([train, cost], feed_dict={X: x_data, Y: y_data})
if step % 100 == 0:
print(step, sess.run(cost, feed_dict={
X: x_data, Y: y_data}), sess.run([W1, W2]))
print(step, cost_val)

# Accuracy report
h, c, a = sess.run([hypothesis, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
h, c, a = sess.run(
[hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}
)
print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a)


Expand Down

0 comments on commit 4af45b7

Please sign in to comment.