Skip to content

Commit

Permalink
Updated lab07 files
Browse files Browse the repository at this point in the history
  • Loading branch information
hunkim committed Mar 16, 2017
1 parent d56c53a commit 923e29a
Show file tree
Hide file tree
Showing 4 changed files with 55 additions and 32 deletions.
27 changes: 26 additions & 1 deletion lab-07-1-learning_rate_and_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,8 @@
# Cross entropy cost/loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
# Try to change learning_rate to small numbers
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.5).minimize(cost)
optimizer = tf.train.GradientDescentOptimizer(
learning_rate=1e-10).minimize(cost)

# Correct prediction Test model
prediction = tf.arg_max(hypothesis, 1)
Expand Down Expand Up @@ -76,6 +77,30 @@
Prediction: [0 0 0]
Accuracy: 0.0
-------------------------------------------------
When lr = 1e-10
0 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
1 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
2 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
...
198 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
199 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
200 5.73203 [[ 0.80269563 0.67861295 -1.21728313]
[-0.3051686 -0.3032113 1.50825703]
[ 0.75722361 -0.7008909 -2.10820389]]
Prediction: [0 0 0]
Accuracy: 0.0
-------------------------------------------------
When lr = 0.1
Expand Down
2 changes: 1 addition & 1 deletion lab-07-2-linear_regression_without_min_max.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,4 +114,4 @@
[ nan]
[ nan]
[ nan]]
'''
'''
2 changes: 1 addition & 1 deletion lab-07-3-linear_regression_min_max.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,4 +65,4 @@ def MinMaxScaler(data):
[ 0.23175186]
[-0.13716528]]
'''
'''
56 changes: 27 additions & 29 deletions lab-07-4-mnist_introduction.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import tensorflow as tf
import random
import matplotlib.pyplot as plt
tf.set_random_seed(777) # for reproducibility

from tensorflow.examples.tutorials.mnist import input_data
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
Expand All @@ -10,42 +11,41 @@

nb_classes = 10

W = tf.Variable(tf.zeros([784, nb_classes]))
b = tf.Variable(tf.zeros([nb_classes]))

# parameters
training_epochs = 15
batch_size = 100

# MNIST data image of shape 28 * 28 = 784
X = tf.placeholder(tf.float32, [None, 784])
# 0 - 9 digits recognition = 10 classes
Y = tf.placeholder(tf.float32, [None, nb_classes])

W = tf.Variable(tf.random_normal([784, nb_classes]))
b = tf.Variable(tf.random_normal([nb_classes]))

# Hypothesis (using softmax)
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)

cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=1.).minimize(cost)
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)

# Test model
is_correct = tf.equal(tf.arg_max(hypothesis, 1), tf.arg_max(Y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

# parameters
training_epochs = 15
batch_size = 100

with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())

# Training cycle
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)

for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feed_dict = {X: batch_xs, Y: batch_ys}
c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
c, _ = sess.run([cost, optimizer], feed_dict={
X: batch_xs, Y: batch_ys})
avg_cost += c / total_batch

print('Epoch:', '%04d' % (epoch + 1),
Expand All @@ -69,23 +69,21 @@


'''
Epoch: 0001 cost = 1.653421078
Epoch: 0002 cost = 1.578180347
Epoch: 0003 cost = 1.567036718
Epoch: 0004 cost = 1.560953102
Epoch: 0005 cost = 1.557037002
Epoch: 0006 cost = 1.553987361
Epoch: 0007 cost = 1.551654525
Epoch: 0008 cost = 1.549694977
Epoch: 0009 cost = 1.548126057
Epoch: 0010 cost = 1.546662330
Epoch: 0011 cost = 1.545407041
Epoch: 0012 cost = 1.544319339
Epoch: 0013 cost = 1.543301272
Epoch: 0014 cost = 1.542362210
Epoch: 0015 cost = 1.541643034
Epoch: 0001 cost = 2.868104637
Epoch: 0002 cost = 1.134684615
Epoch: 0003 cost = 0.908220728
Epoch: 0004 cost = 0.794199896
Epoch: 0005 cost = 0.721815854
Epoch: 0006 cost = 0.670184430
Epoch: 0007 cost = 0.630576546
Epoch: 0008 cost = 0.598888191
Epoch: 0009 cost = 0.573027079
Epoch: 0010 cost = 0.550497213
Epoch: 0011 cost = 0.532001859
Epoch: 0012 cost = 0.515517795
Epoch: 0013 cost = 0.501175288
Epoch: 0014 cost = 0.488425370
Epoch: 0015 cost = 0.476968593
Learning finished
Accuracy: 0.9275
Label: [0]
Prediction: [0]
Accuracy: 0.888
'''

0 comments on commit 923e29a

Please sign in to comment.