Skip to content

Commit

Permalink
Update lab-10-1-mnist_softmax.py
Browse files Browse the repository at this point in the history
1. change epochs, iterations variable name.
2. change optimizer to softmax_cross_entropy_with_logits_v2.
  • Loading branch information
qoocrab authored and kkweon committed Jan 15, 2019
1 parent 0c32b99 commit 931b1c3
Showing 1 changed file with 59 additions and 52 deletions.
111 changes: 59 additions & 52 deletions lab-10-1-mnist_softmax.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,15 @@
# Lab 7 Learning rate and Evaluation
import tensorflow as tf
import matplotlib.pyplot as plt
import random
# import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

tf.set_random_seed(777) # reproducibility

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset

# parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# input place holders
X = tf.placeholder(tf.float32, [None, 784])
Expand All @@ -22,64 +19,74 @@
W = tf.Variable(tf.random_normal([784, 10]))
b = tf.Variable(tf.random_normal([10]))

# parameters
learning_rate = 0.001
batch_size = 100
num_epochs = 50
num_iterations = int(mnist.train.num_examples / batch_size)

hypothesis = tf.matmul(X, W) + b

# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=hypothesis, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
cost = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(
logits=hypothesis, labels=tf.stop_gradient(Y)
)
)
train = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# initialize
sess = tf.Session()
sess.run(tf.global_variables_initializer())
correct_prediction = tf.equal(tf.argmax(hypothesis, axis=1), tf.argmax(Y, axis=1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# train my model
for epoch in range(training_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)
with tf.Session() as sess:
# initialize
sess.run(tf.global_variables_initializer())

for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feed_dict = {X: batch_xs, Y: batch_ys}
c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
avg_cost += c / total_batch
for epoch in range(num_epochs):
avg_cost = 0

print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
for iteration in range(num_iterations):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, cost_val = sess.run([train, cost], feed_dict={X: batch_xs, Y: batch_ys})
avg_cost += cost_val / num_iterations

print('Learning Finished!')
print(f"Epoch: {(epoch + 1):04d}, Cost: {avg_cost:.9f}")

# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
X: mnist.test.images, Y: mnist.test.labels}))
print("Learning Finished!")

# Test model and check accuracy
print(
"Accuracy:",
sess.run(accuracy, feed_dict={X: mnist.test.images, Y: mnist.test.labels}),
)

# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)

# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1]}))
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r : r + 1], axis=1)))
print(
"Prediction: ",
sess.run(
tf.argmax(hypothesis, axis=1), feed_dict={X: mnist.test.images[r : r + 1]}
),
)

# plt.imshow(mnist.test.images[r:r + 1].
# reshape(28, 28), cmap='Greys', interpolation='nearest')
# plt.show()
plt.imshow(
mnist.test.images[r : r + 1].reshape(28, 28),
cmap="Greys",
interpolation="nearest",
)
plt.show()

'''
Epoch: 0001 cost = 5.888845987
Epoch: 0002 cost = 1.860620173
Epoch: 0003 cost = 1.159035648
Epoch: 0004 cost = 0.892340870
Epoch: 0005 cost = 0.751155428
Epoch: 0006 cost = 0.662484806
Epoch: 0007 cost = 0.601544010
Epoch: 0008 cost = 0.556526115
Epoch: 0009 cost = 0.521186961
Epoch: 0010 cost = 0.493068354
Epoch: 0011 cost = 0.469686249
Epoch: 0012 cost = 0.449967254
Epoch: 0013 cost = 0.433519321
Epoch: 0014 cost = 0.419000337
Epoch: 0015 cost = 0.406490815
Epoch: 0001 Cost: 5.745170949
Epoch: 0002 Cost: 1.780056722
Epoch: 0003 Cost: 1.122778654
...
Epoch: 0048 Cost: 0.271918680
Epoch: 0049 Cost: 0.270640434
Epoch: 0050 Cost: 0.269054370
Learning Finished!
Accuracy: 0.9035
Accuracy: 0.9194
'''

0 comments on commit 931b1c3

Please sign in to comment.