Skip to content

Commit

Permalink
modify list indentation style. (hunkim#128)
Browse files Browse the repository at this point in the history
  • Loading branch information
skyer9 authored and hunkim committed Apr 23, 2017
1 parent 8f59ee8 commit a01716d
Show file tree
Hide file tree
Showing 10 changed files with 116 additions and 28 deletions.
13 changes: 10 additions & 3 deletions lab-04-2-multi_variable_matmul_linear_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,16 @@
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility

x_data = [[73., 80., 75.], [93., 88., 93.],
[89., 91., 90.], [96., 98., 100.], [73., 66., 70.]]
y_data = [[152.], [185.], [180.], [196.], [142.]]
x_data = [[73., 80., 75.],
[93., 88., 93.],
[89., 91., 90.],
[96., 98., 100.],
[73., 66., 70.]]
y_data = [[152.],
[185.],
[180.],
[196.],
[142.]]


# placeholders for a tensor that will be always fed.
Expand Down
14 changes: 12 additions & 2 deletions lab-05-1-logistic_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,18 @@
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility

x_data = [[1, 2], [2, 3], [3, 1], [4, 3], [5, 3], [6, 2]]
y_data = [[0], [0], [0], [1], [1], [1]]
x_data = [[1, 2],
[2, 3],
[3, 1],
[4, 3],
[5, 3],
[6, 2]]
y_data = [[0],
[0],
[0],
[1],
[1],
[1]]

# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 2])
Expand Down
20 changes: 16 additions & 4 deletions lab-06-1-softmax_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,10 +2,22 @@
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility

x_data = [[1, 2, 1, 1], [2, 1, 3, 2], [3, 1, 3, 4], [4, 1, 5, 5],
[1, 7, 5, 5], [1, 2, 5, 6], [1, 6, 6, 6], [1, 7, 7, 7]]
y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0],
[0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]]
x_data = [[1, 2, 1, 1],
[2, 1, 3, 2],
[3, 1, 3, 4],
[4, 1, 5, 5],
[1, 7, 5, 5],
[1, 2, 5, 6],
[1, 6, 6, 6],
[1, 7, 7, 7]]
y_data = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]

X = tf.placeholder("float", [None, 4])
Y = tf.placeholder("float", [None, 3])
Expand Down
28 changes: 22 additions & 6 deletions lab-07-1-learning_rate_and_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,15 +2,31 @@
import tensorflow as tf
tf.set_random_seed(777) # for reproducibility

x_data = [[1, 2, 1], [1, 3, 2], [1, 3, 4], [1, 5, 5],
[1, 7, 5], [1, 2, 5], [1, 6, 6], [1, 7, 7]]
y_data = [[0, 0, 1], [0, 0, 1], [0, 0, 1], [0, 1, 0],
[0, 1, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0]]
x_data = [[1, 2, 1],
[1, 3, 2],
[1, 3, 4],
[1, 5, 5],
[1, 7, 5],
[1, 2, 5],
[1, 6, 6],
[1, 7, 7]]
y_data = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[1, 0, 0],
[1, 0, 0]]


# Evaluation our model using this test dataset
x_test = [[2, 1, 1], [3, 1, 2], [3, 3, 4]]
y_test = [[0, 0, 1], [0, 0, 1], [0, 0, 1]]
x_test = [[2, 1, 1],
[3, 1, 2],
[3, 3, 4]]
y_test = [[0, 0, 1],
[0, 0, 1],
[0, 0, 1]]

X = tf.placeholder("float", [None, 3])
Y = tf.placeholder("float", [None, 3])
Expand Down
12 changes: 10 additions & 2 deletions lab-09-1-xor.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,16 @@
import numpy as np
tf.set_random_seed(777) # for reproducibility

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
x_data = [[0, 0],
[0, 1],
[1, 0],
[1, 1]]
y_data = [[0],
[1],
[1],
[0]]
x_data = np.array(x_data, dtype=np.float32)
y_data = np.array(y_data, dtype=np.float32)

X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
Expand Down
12 changes: 10 additions & 2 deletions lab-09-2-xor-nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,16 @@
import numpy as np
tf.set_random_seed(777) # for reproducibility

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
x_data = [[0, 0],
[0, 1],
[1, 0],
[1, 1]]
y_data = [[0],
[1],
[1],
[0]]
x_data = np.array(x_data, dtype=np.float32)
y_data = np.array(y_data, dtype=np.float32)

X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
Expand Down
12 changes: 10 additions & 2 deletions lab-09-3-xor-nn-wide-deep.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,16 @@
import numpy as np
tf.set_random_seed(777) # for reproducibility

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
x_data = [[0, 0],
[0, 1],
[1, 0],
[1, 1]]
y_data = [[0],
[1],
[1],
[0]]
x_data = np.array(x_data, dtype=np.float32)
y_data = np.array(y_data, dtype=np.float32)

X = tf.placeholder(tf.float32, [None, 2])
Y = tf.placeholder(tf.float32, [None, 1])
Expand Down
12 changes: 10 additions & 2 deletions lab-09-4-xor_tensorboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,16 @@
import numpy as np
tf.set_random_seed(777) # for reproducibility

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)
x_data = [[0, 0],
[0, 1],
[1, 0],
[1, 1]]
y_data = [[0],
[1],
[1],
[0]]
x_data = np.array(x_data, dtype=np.float32)
y_data = np.array(y_data, dtype=np.float32)

X = tf.placeholder(tf.float32, [None, 2], name='x-input')
Y = tf.placeholder(tf.float32, [None, 1], name='y-input')
Expand Down
8 changes: 6 additions & 2 deletions lab-09-5-linear_back_prop.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,12 @@
tf.set_random_seed(777) # reproducibility

# tf Graph Input
x_data = [[1.], [2.], [3.]]
y_data = [[1.], [2.], [3.]]
x_data = [[1.],
[2.],
[3.]]
y_data = [[1.],
[2.],
[3.]]


# placeholders for a tensor that will be always fed.
Expand Down
13 changes: 10 additions & 3 deletions lab-09-6-multi-linear_back_prop.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,16 @@
tf.set_random_seed(777) # reproducibility

# tf Graph Input
x_data = [[73., 80., 75.], [93., 88., 93.],
[89., 91., 90.], [96., 98., 100.], [73., 66., 70.]]
y_data = [[152.], [185.], [180.], [196.], [142.]]
x_data = [[73., 80., 75.],
[93., 88., 93.],
[89., 91., 90.],
[96., 98., 100.],
[73., 66., 70.]]
y_data = [[152.],
[185.],
[180.],
[196.],
[142.]]

# placeholders for a tensor that will be always fed.
X = tf.placeholder(tf.float32, shape=[None, 3])
Expand Down

0 comments on commit a01716d

Please sign in to comment.