Skip to content

Commit

Permalink
XOR Tensorboard (hunkim#77)
Browse files Browse the repository at this point in the history
* Added XOR Tensorboard
Updated .gitignore file to ignore logs directory

* Renamed lab-09-7 to lab-09-3
  • Loading branch information
kakao-jun-e authored and hunkim committed Apr 1, 2017
1 parent 255fac7 commit be1b26c
Show file tree
Hide file tree
Showing 2 changed files with 78 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -9,3 +9,4 @@ tb
Untitled*.ipynb
.ropeproject
xlab*
logs
77 changes: 77 additions & 0 deletions lab-09-3-xor_tensorboard.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# Lab 9 XOR
# This example does not work
import tensorflow as tf
import numpy as np
tf.set_random_seed(777) # for reproducibility

x_data = np.array([[0, 0], [0, 1], [1, 0], [1, 1]], dtype=np.float32)
y_data = np.array([[0], [1], [1], [0]], dtype=np.float32)

X = tf.placeholder(tf.float32, [None, 2], name='x-input')
Y = tf.placeholder(tf.float32, [None, 1], name='y-input')

W1 = tf.Variable(tf.random_normal([2, 2]), name='weight1')
b1 = tf.Variable(tf.random_normal([2]), name='bias1')

with tf.name_scope("layer2") as scope:
layer1 = tf.sigmoid(tf.matmul(X, W1) + b1)

W2 = tf.Variable(tf.random_normal([2, 1]), name='weight2')
b2 = tf.Variable(tf.random_normal([1]), name='bias2')

with tf.name_scope("layer3") as scope:
hypothesis = tf.sigmoid(tf.matmul(layer1, W2) + b2)

w1_hist = tf.summary.histogram("weights1", W1)
w2_hist = tf.summary.histogram("weights2", W2)
b1_hist = tf.summary.histogram("biases1", b1)
b2_hist = tf.summary.histogram("biases2", b2)
y_hist = tf.summary.histogram("y", Y)

# cost/loss function
with tf.name_scope("cost") as scope:
cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) *
tf.log(1 - hypothesis))
cost_summ = tf.summary.scalar("cost", cost)

with tf.name_scope("train") as scope:
train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)

# Accuracy computation
# True if hypothesis>0.5 else False
predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32)
accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32))

# Launch graph
with tf.Session() as sess:
#tensorboard --logdir=./logs/xor_logs
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("./logs/xor_logs", sess.graph)

# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())

for step in range(10001):
summary, _ = sess.run([merged, train], feed_dict={X: x_data, Y: y_data})
if step % 100 == 0:
print(step, sess.run(cost, feed_dict={
X: x_data, Y: y_data}), sess.run([W1, W2]))
writer.add_summary(summary, step)

# Accuracy report
h, c, a = sess.run([hypothesis, predicted, accuracy],
feed_dict={X: x_data, Y: y_data})
print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a)


'''
Hypothesis: [[ 0.01338218]
[ 0.98166394]
[ 0.98809403]
[ 0.01135799]]
Correct: [[ 0.]
[ 1.]
[ 1.]
[ 0.]]
Accuracy: 1.0
'''

0 comments on commit be1b26c

Please sign in to comment.