Skip to content

Commit

Permalink
Update lab-07-4-mnist_introduction.py
Browse files Browse the repository at this point in the history
1. Change arg_max to argmax.
2. Change the name of the variable 'total_batch' to 'num_iterations' to understand the concept of 'iterations' mentioned in the lecture.
  • Loading branch information
qoocrab authored and kkweon committed Jan 13, 2019
1 parent 662772e commit db9125b
Showing 1 changed file with 43 additions and 36 deletions.
79 changes: 43 additions & 36 deletions lab-07-4-mnist_introduction.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,12 @@
# Lab 7 Learning rate and Evaluation
import tensorflow as tf
import random
import matplotlib.pyplot as plt
import random

tf.set_random_seed(777) # for reproducibility

from tensorflow.examples.tutorials.mnist import input_data

# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
Expand All @@ -23,69 +25,74 @@
hypothesis = tf.nn.softmax(tf.matmul(X, W) + b)

cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)

# Test model
is_correct = tf.equal(tf.arg_max(hypothesis, 1), tf.arg_max(Y, 1))
is_correct = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))

# parameters
training_epochs = 15
num_epochs = 15
batch_size = 100
num_iterations = int(mnist.train.num_examples / batch_size)

with tf.Session() as sess:
# Initialize TensorFlow variables
sess.run(tf.global_variables_initializer())
# Training cycle
for epoch in range(training_epochs):
for epoch in range(num_epochs):
avg_cost = 0
total_batch = int(mnist.train.num_examples / batch_size)

for i in range(total_batch):
for i in range(num_iterations):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
c, _ = sess.run([cost, optimizer], feed_dict={
X: batch_xs, Y: batch_ys})
avg_cost += c / total_batch
_, cost_val = sess.run([train, cost], feed_dict={X: batch_xs, Y: batch_ys})
avg_cost += cost_val / num_iterations

print('Epoch:', '%04d' % (epoch + 1),
'cost =', '{:.9f}'.format(avg_cost))
print("Epoch: {:04d}, Cost: {:.9f}".format(epoch + 1, avg_cost))

print("Learning finished")

# Test the model using test sets
print("Accuracy: ", accuracy.eval(session=sess, feed_dict={
X: mnist.test.images, Y: mnist.test.labels}))
print(
"Accuracy: ",
accuracy.eval(
session=sess, feed_dict={X: mnist.test.images, Y: mnist.test.labels}
),
)

# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1]}))
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r : r + 1], 1)))
print(
"Prediction: ",
sess.run(tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r : r + 1]}),
)

plt.imshow(
mnist.test.images[r:r + 1].reshape(28, 28),
cmap='Greys',
interpolation='nearest')
mnist.test.images[r : r + 1].reshape(28, 28),
cmap="Greys",
interpolation="nearest",
)
plt.show()


'''
Epoch: 0001 cost = 2.868104637
Epoch: 0002 cost = 1.134684615
Epoch: 0003 cost = 0.908220728
Epoch: 0004 cost = 0.794199896
Epoch: 0005 cost = 0.721815854
Epoch: 0006 cost = 0.670184430
Epoch: 0007 cost = 0.630576546
Epoch: 0008 cost = 0.598888191
Epoch: 0009 cost = 0.573027079
Epoch: 0010 cost = 0.550497213
Epoch: 0011 cost = 0.532001859
Epoch: 0012 cost = 0.515517795
Epoch: 0013 cost = 0.501175288
Epoch: 0014 cost = 0.488425370
Epoch: 0015 cost = 0.476968593
Epoch: 0001, Cost: 2.826302672
Epoch: 0002, Cost: 1.061668952
Epoch: 0003, Cost: 0.838061315
Epoch: 0004, Cost: 0.733232745
Epoch: 0005, Cost: 0.669279885
Epoch: 0006, Cost: 0.624611836
Epoch: 0007, Cost: 0.591160344
Epoch: 0008, Cost: 0.563868987
Epoch: 0009, Cost: 0.541745171
Epoch: 0010, Cost: 0.522673578
Epoch: 0011, Cost: 0.506782325
Epoch: 0012, Cost: 0.492447643
Epoch: 0013, Cost: 0.479955837
Epoch: 0014, Cost: 0.468893674
Epoch: 0015, Cost: 0.458703488
Learning finished
Accuracy: 0.888
Accuracy: 0.8951
'''

0 comments on commit db9125b

Please sign in to comment.