Skip to content

Commit

Permalink
Added layers
Browse files Browse the repository at this point in the history
  • Loading branch information
hunkim committed Mar 25, 2017
1 parent 1271fad commit f06fda8
Show file tree
Hide file tree
Showing 7 changed files with 218 additions and 30 deletions.
10 changes: 5 additions & 5 deletions lab-11-1-mnist_cnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@
L2 = tf.nn.relu(L2)
L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
L2 = tf.reshape(L2, [-1, 7 * 7 * 64])
L2_flat = tf.reshape(L2, [-1, 7 * 7 * 64])
'''
Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32)
Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32)
Expand All @@ -55,11 +55,11 @@
W3 = tf.get_variable("W3", shape=[7 * 7 * 64, 10],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L2, W3) + b
logits = tf.matmul(L2_flat, W3) + b

# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=hypothesis, labels=Y))
logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# initialize
Expand All @@ -83,7 +83,7 @@
print('Learning Finished!')

# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
X: mnist.test.images, Y: mnist.test.labels}))
Expand All @@ -92,7 +92,7 @@
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1]}))
tf.argmax(logits, 1), feed_dict={X: mnist.test.images[r:r + 1]}))

# plt.imshow(mnist.test.images[r:r + 1].
# reshape(28, 28), cmap='Greys', interpolation='nearest')
Expand Down
12 changes: 6 additions & 6 deletions lab-11-2-mnist_deep_cnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@
L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[
1, 2, 2, 1], padding='SAME')
L3 = tf.nn.dropout(L3, keep_prob=keep_prob)
L3 = tf.reshape(L3, [-1, 128 * 4 * 4])
L3_flat = tf.reshape(L3, [-1, 128 * 4 * 4])
'''
Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)
Expand All @@ -79,7 +79,7 @@
W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([625]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.relu(tf.matmul(L3_flat, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=keep_prob)
'''
Tensor("Relu_3:0", shape=(?, 625), dtype=float32)
Expand All @@ -90,14 +90,14 @@
W5 = tf.get_variable("W5", shape=[625, 10],
initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
hypothesis = tf.matmul(L4, W5) + b5
logits = tf.matmul(L4, W5) + b5
'''
Tensor("add_1:0", shape=(?, 10), dtype=float32)
'''

# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=hypothesis, labels=Y))
logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# initialize
Expand All @@ -121,7 +121,7 @@
print('Learning Finished!')

# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(hypothesis, 1), tf.argmax(Y, 1))
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1}))
Expand All @@ -130,7 +130,7 @@
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
tf.argmax(hypothesis, 1), feed_dict={X: mnist.test.images[r:r + 1], keep_prob: 1}))
tf.argmax(logits, 1), feed_dict={X: mnist.test.images[r:r + 1], keep_prob: 1}))

# plt.imshow(mnist.test.images[r:r + 1].
# reshape(28, 28), cmap='Greys', interpolation='nearest')
Expand Down
13 changes: 7 additions & 6 deletions lab-11-3-mnist_cnn_class.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,8 @@ def _build_net(self):
L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[
1, 2, 2, 1], padding='SAME')
L3 = tf.nn.dropout(L3, keep_prob=self.keep_prob)
L3 = tf.reshape(L3, [-1, 128 * 4 * 4])

L3_flat = tf.reshape(L3, [-1, 128 * 4 * 4])
'''
Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)
Expand All @@ -91,7 +92,7 @@ def _build_net(self):
W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([625]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.relu(tf.matmul(L3_flat, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=self.keep_prob)
'''
Tensor("Relu_3:0", shape=(?, 625), dtype=float32)
Expand All @@ -102,23 +103,23 @@ def _build_net(self):
W5 = tf.get_variable("W5", shape=[625, 10],
initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
self.logit = tf.matmul(L4, W5) + b5
self.logits = tf.matmul(L4, W5) + b5
'''
Tensor("add_1:0", shape=(?, 10), dtype=float32)
'''

# define cost/loss & optimizer
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=self.logit, labels=self.Y))
logits=self.logits, labels=self.Y))
self.optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate).minimize(self.cost)

correct_prediction = tf.equal(
tf.argmax(self.logit, 1), tf.argmax(self.Y, 1))
tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

def predict(self, x_test, keep_prop=1.0):
return self.sess.run(self.logit, feed_dict={self.X: x_test, self.keep_prob: keep_prop})
return self.sess.run(self.logits, feed_dict={self.X: x_test, self.keep_prob: keep_prop})

def get_accuracy(self, x_test, y_test, keep_prop=1.0):
return self.sess.run(self.accuracy, feed_dict={self.X: x_test, self.Y: y_test, self.keep_prob: keep_prop})
Expand Down
15 changes: 9 additions & 6 deletions lab-11-4-mnist_cnn_ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,8 @@ def _build_net(self):
L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[
1, 2, 2, 1], padding='SAME')
L3 = tf.nn.dropout(L3, keep_prob=self.keep_prob)
L3 = tf.reshape(L3, [-1, 128 * 4 * 4])

L3_flat = tf.reshape(L3, [-1, 128 * 4 * 4])
'''
Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)
Expand All @@ -90,7 +91,7 @@ def _build_net(self):
W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],
initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([625]))
L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
L4 = tf.nn.relu(tf.matmul(L3_flat, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=self.keep_prob)
'''
Tensor("Relu_3:0", shape=(?, 625), dtype=float32)
Expand All @@ -101,23 +102,23 @@ def _build_net(self):
W5 = tf.get_variable("W5", shape=[625, 10],
initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
self.logit = tf.matmul(L4, W5) + b5
self.logits = tf.matmul(L4, W5) + b5
'''
Tensor("add_1:0", shape=(?, 10), dtype=float32)
'''

# define cost/loss & optimizer
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=self.logit, labels=self.Y))
logits=self.logits, labels=self.Y))
self.optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate).minimize(self.cost)

correct_prediction = tf.equal(
tf.argmax(self.logit, 1), tf.argmax(self.Y, 1))
tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

def predict(self, x_test, keep_prop=1.0):
return self.sess.run(self.logit, feed_dict={self.X: x_test, self.keep_prob: keep_prop})
return self.sess.run(self.logits, feed_dict={self.X: x_test, self.keep_prob: keep_prop})

def get_accuracy(self, x_test, y_test, keep_prop=1.0):
return self.sess.run(self.accuracy, feed_dict={self.X: x_test, self.Y: y_test, self.keep_prob: keep_prop})
Expand All @@ -136,6 +137,8 @@ def train(self, x_data, y_data, keep_prop=0.7):

sess.run(tf.global_variables_initializer())

print('Learning Started!')

# train my model
for epoch in range(training_epochs):
avg_cost_list = np.zeros(len(models))
Expand Down
178 changes: 178 additions & 0 deletions lab-11-5-mnist_cnn_ensemble_layers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,178 @@
# Lab 11 MNIST and Deep learning CNN
# https://www.tensorflow.org/tutorials/layers
import tensorflow as tf
import numpy as np

from tensorflow.examples.tutorials.mnist import input_data

tf.set_random_seed(777) # reproducibility

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset

# hyper parameters
learning_rate = 0.001
training_epochs = 20
batch_size = 100


class Model:

def __init__(self, sess, name):
self.sess = sess
self.name = name
self._build_net()

def _build_net(self):
with tf.variable_scope(self.name):
# dropout (keep_prob) rate 0.7~0.5 on training, but should be 1
# for testing
self.training = tf.placeholder(tf.bool)

# input place holders
self.X = tf.placeholder(tf.float32, [None, 784])

# img 28x28x1 (black/white), Input Layer
X_img = tf.reshape(self.X, [-1, 28, 28, 1])
self.Y = tf.placeholder(tf.float32, [None, 10])

# L1 ImgIn shape=(?, 28, 28, 1)
# W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01))
# Conv -> (?, 28, 28, 32)
# Pool -> (?, 14, 14, 32)
# L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')
# L1 = tf.nn.relu(L1)

# Convolutional Layer #1
conv1 = tf.layers.conv2d(inputs=X_img, filters=32, kernel_size=[3, 3],
padding="SAME", activation=tf.nn.relu)

# L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1],
# strides=[1, 2, 2, 1], padding='SAME')

# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],
padding="SAME", strides=2)

# L1 = tf.nn.dropout(L1, keep_prob=self.keep_prob)
dropout1 = tf.layers.dropout(inputs=pool1,
rate=0.7, training=self.training)

# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(inputs=dropout1, filters=64, kernel_size=[3, 3],
padding="SAME", activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],
padding="SAME", strides=2)
dropout2 = tf.layers.dropout(inputs=pool2,
rate=0.7, training=self.training)

# Convolutional Layer #2 and Pooling Layer #2
conv3 = tf.layers.conv2d(inputs=dropout2, filters=128, kernel_size=[3, 3],
padding="same", activation=tf.nn.relu)
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2],
padding="same", strides=2)
dropout3 = tf.layers.dropout(inputs=pool3,
rate=0.7, training=self.training)

flat = tf.reshape(dropout3, [-1, 128 * 4 * 4])
'''
Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32)
Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32)
Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32)
'''

# # Dense Layer: 4x4x128 inputs -> 625 outputs
# W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],
# initializer=tf.contrib.layers.xavier_initializer())
# b4 = tf.Variable(tf.random_normal([625]))
# L4 = tf.nn.relu(tf.matmul(L3, W4) + b4)
# L4 = tf.nn.dropout(L4, keep_prob=self.keep_prob)

dense4 = tf.layers.dense(inputs=flat,
units=625, activation=tf.nn.relu)
dropout4 = tf.layers.dropout(inputs=dense4,
rate=0.5, training=self.training)

# Logits Layer: L5 Final FC 625 inputs -> 10 outputs
self.logits = tf.layers.dense(inputs=dropout4, units=10)

# define cost/loss & optimizer
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits, labels=self.Y))
self.optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate).minimize(self.cost)

correct_prediction = tf.equal(
tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

def predict(self, x_test, training=False):
return self.sess.run(self.logits,
feed_dict={self.X: x_test, self.training: training})

def get_accuracy(self, x_test, y_test, training=False):
return self.sess.run(self.accuracy,
feed_dict={self.X: x_test,
self.Y: y_test, self.training: training})

def train(self, x_data, y_data, training=True):
return self.sess.run([self.cost, self.optimizer], feed_dict={
self.X: x_data, self.Y: y_data, self.training: training})

# initialize
sess = tf.Session()

models = []
num_models = 2
for m in range(num_models):
models.append(Model(sess, "model" + str(m)))

sess.run(tf.global_variables_initializer())

print('Learning Started!')

# train my model
for epoch in range(training_epochs):
avg_cost_list = np.zeros(len(models))
total_batch = int(mnist.train.num_examples / batch_size)
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)

# train each model
for m_idx, m in enumerate(models):
c, _ = m.train(batch_xs, batch_ys)
avg_cost_list[m_idx] += c / total_batch

print('Epoch:', '%04d' % (epoch + 1), 'cost =', avg_cost_list)

print('Learning Finished!')

# Test model and check accuracy
test_size = len(mnist.test.labels)
predictions = np.zeros(test_size * 10).reshape(test_size, 10)
for m_idx, m in enumerate(models):
print(m_idx, 'Accuracy:', m.get_accuracy(
mnist.test.images, mnist.test.labels))
p = m.predict(mnist.test.images)
predictions += p

ensemble_correct_prediction = tf.equal(
tf.argmax(predictions, 1), tf.argmax(mnist.test.labels, 1))
ensemble_accuracy = tf.reduce_mean(
tf.cast(ensemble_correct_prediction, tf.float32))
print('Ensemble accuracy:', sess.run(ensemble_accuracy))

'''
0 Accuracy: 0.9933
1 Accuracy: 0.9946
2 Accuracy: 0.9934
3 Accuracy: 0.9935
4 Accuracy: 0.9935
5 Accuracy: 0.9949
6 Accuracy: 0.9941
Ensemble accuracy: 0.9952
'''
Loading

0 comments on commit f06fda8

Please sign in to comment.