forked from hunkim/DeepLearningZeroToAll
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
218 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,178 @@ | ||
# Lab 11 MNIST and Deep learning CNN | ||
# https://www.tensorflow.org/tutorials/layers | ||
import tensorflow as tf | ||
import numpy as np | ||
|
||
from tensorflow.examples.tutorials.mnist import input_data | ||
|
||
tf.set_random_seed(777) # reproducibility | ||
|
||
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) | ||
# Check out https://www.tensorflow.org/get_started/mnist/beginners for | ||
# more information about the mnist dataset | ||
|
||
# hyper parameters | ||
learning_rate = 0.001 | ||
training_epochs = 20 | ||
batch_size = 100 | ||
|
||
|
||
class Model: | ||
|
||
def __init__(self, sess, name): | ||
self.sess = sess | ||
self.name = name | ||
self._build_net() | ||
|
||
def _build_net(self): | ||
with tf.variable_scope(self.name): | ||
# dropout (keep_prob) rate 0.7~0.5 on training, but should be 1 | ||
# for testing | ||
self.training = tf.placeholder(tf.bool) | ||
|
||
# input place holders | ||
self.X = tf.placeholder(tf.float32, [None, 784]) | ||
|
||
# img 28x28x1 (black/white), Input Layer | ||
X_img = tf.reshape(self.X, [-1, 28, 28, 1]) | ||
self.Y = tf.placeholder(tf.float32, [None, 10]) | ||
|
||
# L1 ImgIn shape=(?, 28, 28, 1) | ||
# W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01)) | ||
# Conv -> (?, 28, 28, 32) | ||
# Pool -> (?, 14, 14, 32) | ||
# L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME') | ||
# L1 = tf.nn.relu(L1) | ||
|
||
# Convolutional Layer #1 | ||
conv1 = tf.layers.conv2d(inputs=X_img, filters=32, kernel_size=[3, 3], | ||
padding="SAME", activation=tf.nn.relu) | ||
|
||
# L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1], | ||
# strides=[1, 2, 2, 1], padding='SAME') | ||
|
||
# Pooling Layer #1 | ||
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], | ||
padding="SAME", strides=2) | ||
|
||
# L1 = tf.nn.dropout(L1, keep_prob=self.keep_prob) | ||
dropout1 = tf.layers.dropout(inputs=pool1, | ||
rate=0.7, training=self.training) | ||
|
||
# Convolutional Layer #2 and Pooling Layer #2 | ||
conv2 = tf.layers.conv2d(inputs=dropout1, filters=64, kernel_size=[3, 3], | ||
padding="SAME", activation=tf.nn.relu) | ||
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], | ||
padding="SAME", strides=2) | ||
dropout2 = tf.layers.dropout(inputs=pool2, | ||
rate=0.7, training=self.training) | ||
|
||
# Convolutional Layer #2 and Pooling Layer #2 | ||
conv3 = tf.layers.conv2d(inputs=dropout2, filters=128, kernel_size=[3, 3], | ||
padding="same", activation=tf.nn.relu) | ||
pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2], | ||
padding="same", strides=2) | ||
dropout3 = tf.layers.dropout(inputs=pool3, | ||
rate=0.7, training=self.training) | ||
|
||
flat = tf.reshape(dropout3, [-1, 128 * 4 * 4]) | ||
''' | ||
Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32) | ||
Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32) | ||
Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32) | ||
Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32) | ||
Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32) | ||
''' | ||
|
||
# # Dense Layer: 4x4x128 inputs -> 625 outputs | ||
# W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625], | ||
# initializer=tf.contrib.layers.xavier_initializer()) | ||
# b4 = tf.Variable(tf.random_normal([625])) | ||
# L4 = tf.nn.relu(tf.matmul(L3, W4) + b4) | ||
# L4 = tf.nn.dropout(L4, keep_prob=self.keep_prob) | ||
|
||
dense4 = tf.layers.dense(inputs=flat, | ||
units=625, activation=tf.nn.relu) | ||
dropout4 = tf.layers.dropout(inputs=dense4, | ||
rate=0.5, training=self.training) | ||
|
||
# Logits Layer: L5 Final FC 625 inputs -> 10 outputs | ||
self.logits = tf.layers.dense(inputs=dropout4, units=10) | ||
|
||
# define cost/loss & optimizer | ||
self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( | ||
logits=self.logits, labels=self.Y)) | ||
self.optimizer = tf.train.AdamOptimizer( | ||
learning_rate=learning_rate).minimize(self.cost) | ||
|
||
correct_prediction = tf.equal( | ||
tf.argmax(self.logits, 1), tf.argmax(self.Y, 1)) | ||
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | ||
|
||
def predict(self, x_test, training=False): | ||
return self.sess.run(self.logits, | ||
feed_dict={self.X: x_test, self.training: training}) | ||
|
||
def get_accuracy(self, x_test, y_test, training=False): | ||
return self.sess.run(self.accuracy, | ||
feed_dict={self.X: x_test, | ||
self.Y: y_test, self.training: training}) | ||
|
||
def train(self, x_data, y_data, training=True): | ||
return self.sess.run([self.cost, self.optimizer], feed_dict={ | ||
self.X: x_data, self.Y: y_data, self.training: training}) | ||
|
||
# initialize | ||
sess = tf.Session() | ||
|
||
models = [] | ||
num_models = 2 | ||
for m in range(num_models): | ||
models.append(Model(sess, "model" + str(m))) | ||
|
||
sess.run(tf.global_variables_initializer()) | ||
|
||
print('Learning Started!') | ||
|
||
# train my model | ||
for epoch in range(training_epochs): | ||
avg_cost_list = np.zeros(len(models)) | ||
total_batch = int(mnist.train.num_examples / batch_size) | ||
for i in range(total_batch): | ||
batch_xs, batch_ys = mnist.train.next_batch(batch_size) | ||
|
||
# train each model | ||
for m_idx, m in enumerate(models): | ||
c, _ = m.train(batch_xs, batch_ys) | ||
avg_cost_list[m_idx] += c / total_batch | ||
|
||
print('Epoch:', '%04d' % (epoch + 1), 'cost =', avg_cost_list) | ||
|
||
print('Learning Finished!') | ||
|
||
# Test model and check accuracy | ||
test_size = len(mnist.test.labels) | ||
predictions = np.zeros(test_size * 10).reshape(test_size, 10) | ||
for m_idx, m in enumerate(models): | ||
print(m_idx, 'Accuracy:', m.get_accuracy( | ||
mnist.test.images, mnist.test.labels)) | ||
p = m.predict(mnist.test.images) | ||
predictions += p | ||
|
||
ensemble_correct_prediction = tf.equal( | ||
tf.argmax(predictions, 1), tf.argmax(mnist.test.labels, 1)) | ||
ensemble_accuracy = tf.reduce_mean( | ||
tf.cast(ensemble_correct_prediction, tf.float32)) | ||
print('Ensemble accuracy:', sess.run(ensemble_accuracy)) | ||
|
||
''' | ||
0 Accuracy: 0.9933 | ||
1 Accuracy: 0.9946 | ||
2 Accuracy: 0.9934 | ||
3 Accuracy: 0.9935 | ||
4 Accuracy: 0.9935 | ||
5 Accuracy: 0.9949 | ||
6 Accuracy: 0.9941 | ||
Ensemble accuracy: 0.9952 | ||
''' |
Oops, something went wrong.