mega-small-2048-C1024-MR50-sw_minipile-tk_ema32

This model is a fine-tuned version of pszemraj/mega-small-2048-C1024-simplewiki-MR50-tk_ema32 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7559
  • Accuracy: 0.4177

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 3208
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-07
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.0539 0.05 100 5.0404 0.2907
4.8869 0.1 200 4.6659 0.3216
4.6364 0.15 300 4.4565 0.3416
4.8682 0.2 400 4.3119 0.3557
4.3904 0.25 500 4.2410 0.3664
4.3191 0.3 600 4.1880 0.3701
4.5587 0.35 700 4.0996 0.3789
4.1517 0.4 800 4.0724 0.3839
4.1427 0.45 900 4.0177 0.3892
3.8845 0.5 1000 3.9725 0.3928
4.1478 0.55 1100 3.9080 0.4007
4.0271 0.6 1200 3.8979 0.4002
4.0132 0.65 1300 3.8647 0.4057
3.7284 0.7 1400 3.8518 0.4063
3.9346 0.75 1500 3.8178 0.4100
4.0403 0.8 1600 3.8015 0.4126
3.9726 0.85 1700 3.7916 0.4138
3.8489 0.9 1800 3.7630 0.4162
3.7117 0.95 1900 3.7745 0.4162
3.654 1.0 2000 3.7559 0.4177

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.1.0.dev20230809+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pszemraj/mega-small-2048-C1024-MR50-sw_minipile-tk_ema32

Datasets used to train pszemraj/mega-small-2048-C1024-MR50-sw_minipile-tk_ema32