Skip to content

A pre-trained language model for social media text in Spanish

License

Notifications You must be signed in to change notification settings

pysentimiento/robertuito

Repository files navigation

RoBERTuito

A pre-trained language model for social media text in Spanish

READ THE PAPER

Github Repository

Test it in Colab

RoBERTuito is a pre-trained language model for user-generated content in Spanish, trained following RoBERTa guidelines on 500 million tweets. RoBERTuito comes in 3 flavors: cased, uncased, and uncased+deaccented.

We tested RoBERTuito on a benchmark of tasks involving user-generated text in Spanish. It outperforms other pre-trained language models for this language such as BETO, BERTin and RoBERTa-BNE. The 4 tasks selected for evaluation were: Hate Speech Detection (using SemEval 2019 Task 5, HatEval dataset), Sentiment and Emotion Analysis (using TASS 2020 datasets), and Irony detection (using IrosVa 2019 dataset).

model hate speech sentiment analysis emotion analysis irony detection score
robertuito-uncased 0.801 ± 0.010 0.707 ± 0.004 0.551 ± 0.011 0.736 ± 0.008 0.699
robertuito-deacc 0.798 ± 0.008 0.702 ± 0.004 0.543 ± 0.015 0.740 ± 0.006 0.696
robertuito-cased 0.790 ± 0.012 0.701 ± 0.012 0.519 ± 0.032 0.719 ± 0.023 0.682
roberta-bne 0.766 ± 0.015 0.669 ± 0.006 0.533 ± 0.011 0.723 ± 0.017 0.673
bertin 0.767 ± 0.005 0.665 ± 0.003 0.518 ± 0.012 0.716 ± 0.008 0.667
beto-cased 0.768 ± 0.012 0.665 ± 0.004 0.521 ± 0.012 0.706 ± 0.007 0.665
beto-uncased 0.757 ± 0.012 0.649 ± 0.005 0.521 ± 0.006 0.702 ± 0.008 0.657

We release the pre-trained models on huggingface model hub:

Usage

IMPORTANT -- READ THIS FIRST

RoBERTuito is not yet fully-integrated into huggingface/transformers. To use it, first install pysentimiento

pip install pysentimiento

and preprocess text using pysentimiento.preprocessing.preprocess_tweet before feeding it into the tokenizer

from transformers import AutoTokenizer
from pysentimiento.preprocessing import preprocess_tweet

tokenizer = AutoTokenizer.from_pretrained('pysentimiento/robertuito-base-cased')

text = "Esto es un tweet estoy usando #Robertuito @pysentimiento 🤣"
preprocessed_text = preprocess_tweet(text)

tokenizer.tokenize(preprocessed_text)
# ['<s>','▁Esto','▁es','▁un','▁tweet','▁estoy','▁usando','▁','▁hashtag','▁','▁ro','bert','uito','▁@usuario','▁','▁emoji','▁cara','▁revolviéndose','▁de','▁la','▁risa','▁emoji','</s>']

We are working on integrating this preprocessing step into a Tokenizer within transformers library

You can check a text classification example in this notebook: Test it in Colab

Training dataset

You can find the tweets used on RoBERTuito's pre-training data at huggingface

Development

Installing

We use python==3.7 and poetry to manage dependencies.

pip install poetry
poetry install

Benchmarking

To run benchmarks

python bin/run_benchmark.py <model_name> --times 5 --output_path <output_path>

Citation

If you use RoBERTuito, please cite our paper:

@inproceedings{perez2022robertuito,
  author    = {Pérez, Juan Manuel  and  Furman, Damián Ariel  and  Alonso Alemany, Laura  and  Luque, Franco M.},
  title     = {RoBERTuito: a pre-trained language model for social media text in Spanish},
  booktitle = {Proceedings of the Language Resources and Evaluation Conference},
  month     = {June},
  year      = {2022},
  address   = {Marseille, France},
  publisher = {European Language Resources Association},
  pages     = {7235--7243},
  url       = {https://aclanthology.org/2022.lrec-1.785}
}

About

A pre-trained language model for social media text in Spanish

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages