RoBERTuito is a pre-trained language model for user-generated content in Spanish, trained following RoBERTa guidelines on 500 million tweets. RoBERTuito comes in 3 flavors: cased, uncased, and uncased+deaccented.
We tested RoBERTuito on a benchmark of tasks involving user-generated text in Spanish. It outperforms other pre-trained language models for this language such as BETO, BERTin and RoBERTa-BNE. The 4 tasks selected for evaluation were: Hate Speech Detection (using SemEval 2019 Task 5, HatEval dataset), Sentiment and Emotion Analysis (using TASS 2020 datasets), and Irony detection (using IrosVa 2019 dataset).
model | hate speech | sentiment analysis | emotion analysis | irony detection | score |
---|---|---|---|---|---|
robertuito-uncased | 0.801 ± 0.010 | 0.707 ± 0.004 | 0.551 ± 0.011 | 0.736 ± 0.008 | 0.699 |
robertuito-deacc | 0.798 ± 0.008 | 0.702 ± 0.004 | 0.543 ± 0.015 | 0.740 ± 0.006 | 0.696 |
robertuito-cased | 0.790 ± 0.012 | 0.701 ± 0.012 | 0.519 ± 0.032 | 0.719 ± 0.023 | 0.682 |
roberta-bne | 0.766 ± 0.015 | 0.669 ± 0.006 | 0.533 ± 0.011 | 0.723 ± 0.017 | 0.673 |
bertin | 0.767 ± 0.005 | 0.665 ± 0.003 | 0.518 ± 0.012 | 0.716 ± 0.008 | 0.667 |
beto-cased | 0.768 ± 0.012 | 0.665 ± 0.004 | 0.521 ± 0.012 | 0.706 ± 0.007 | 0.665 |
beto-uncased | 0.757 ± 0.012 | 0.649 ± 0.005 | 0.521 ± 0.006 | 0.702 ± 0.008 | 0.657 |
We release the pre-trained models on huggingface model hub:
IMPORTANT -- READ THIS FIRST
RoBERTuito is not yet fully-integrated into huggingface/transformers
. To use it, first install pysentimiento
pip install pysentimiento
and preprocess text using pysentimiento.preprocessing.preprocess_tweet
before feeding it into the tokenizer
from transformers import AutoTokenizer
from pysentimiento.preprocessing import preprocess_tweet
tokenizer = AutoTokenizer.from_pretrained('pysentimiento/robertuito-base-cased')
text = "Esto es un tweet estoy usando #Robertuito @pysentimiento 🤣"
preprocessed_text = preprocess_tweet(text)
tokenizer.tokenize(preprocessed_text)
# ['<s>','▁Esto','▁es','▁un','▁tweet','▁estoy','▁usando','▁','▁hashtag','▁','▁ro','bert','uito','▁@usuario','▁','▁emoji','▁cara','▁revolviéndose','▁de','▁la','▁risa','▁emoji','</s>']
We are working on integrating this preprocessing step into a Tokenizer within transformers
library
You can check a text classification example in this notebook:
You can find the tweets used on RoBERTuito's pre-training data at huggingface
We use python==3.7
and poetry
to manage dependencies.
pip install poetry
poetry install
To run benchmarks
python bin/run_benchmark.py <model_name> --times 5 --output_path <output_path>
If you use RoBERTuito, please cite our paper:
@inproceedings{perez2022robertuito,
author = {Pérez, Juan Manuel and Furman, Damián Ariel and Alonso Alemany, Laura and Luque, Franco M.},
title = {RoBERTuito: a pre-trained language model for social media text in Spanish},
booktitle = {Proceedings of the Language Resources and Evaluation Conference},
month = {June},
year = {2022},
address = {Marseille, France},
publisher = {European Language Resources Association},
pages = {7235--7243},
url = {https://aclanthology.org/2022.lrec-1.785}
}