Skip to content

Re-land "Add INT8 SDPA path for CPU" #2093

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 36 commits into from
Apr 28, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
36 commits
Select commit Hold shift + click to select a range
82f0d70
[CPU] add int8 sdpa path for cpu
Valentine233 Dec 3, 2024
b5985ae
update int8 sdpa
Valentine233 Dec 3, 2024
57949cc
update int8 sdpa
Valentine233 Dec 3, 2024
cf82d1c
update int8 sdpa
Valentine233 Dec 3, 2024
95c5de0
update int8 sdpa cpu
Valentine233 Dec 17, 2024
52ddb9b
update int8 sdpa cpu
Valentine233 Jan 7, 2025
65ae166
update int8 sdpa cpu
Valentine233 Jan 8, 2025
e7c5a22
update int8 sdpa cpu
Valentine233 Feb 13, 2025
18b3ae9
add heuristic strategy selection
Valentine233 Feb 14, 2025
dd71798
update pattern match
Valentine233 Feb 26, 2025
16f82cf
update
Valentine233 Feb 26, 2025
bd9ae06
update
Valentine233 Feb 26, 2025
c647888
update
Valentine233 Mar 3, 2025
6a119f6
update
Valentine233 Mar 4, 2025
ecb0516
update
Valentine233 Mar 4, 2025
170499e
fix issue
Valentine233 Mar 4, 2025
b9804fa
fix issue
Valentine233 Mar 4, 2025
45ed3cc
fix issue
Valentine233 Mar 4, 2025
b3b9b39
fix issue
Valentine233 Mar 4, 2025
1054e88
fix issue
Valentine233 Mar 5, 2025
3d192a7
update
Valentine233 Mar 5, 2025
9acf6f0
fix issue
Valentine233 Mar 11, 2025
dc78455
fix issue
Valentine233 Mar 11, 2025
97485c5
update
Valentine233 Mar 26, 2025
0fb02f7
optm kernel
Valentine233 Apr 10, 2025
3856f49
rebase and update
Valentine233 Apr 15, 2025
246d545
fix issue
Valentine233 Apr 15, 2025
cc3c474
fix issue
Valentine233 Apr 15, 2025
4da9b6e
fix issue
Valentine233 Apr 15, 2025
ea1c75e
fix issue
Valentine233 Apr 15, 2025
e586b33
set strict value for export_for_training
Valentine233 Apr 16, 2025
b8857ff
modify name in setup
Valentine233 Apr 16, 2025
53a6cb6
refactor code according to comments
Valentine233 Apr 17, 2025
dcf2a55
change param orders
Valentine233 Apr 18, 2025
27d6fc6
fix internal build errors
Valentine233 Apr 22, 2025
2dc7d78
ruff format
Valentine233 Apr 25, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,10 @@ def read_version(file_path="version.txt"):
and platform.system() == "Darwin"
)

use_cpp_avx512 = os.getenv("USE_AVX512", "1") == "1" and platform.system() == "Linux"

from torchao.utils import TORCH_VERSION_AT_LEAST_2_7

version_prefix = read_version()
# Version is version.dev year month date if using nightlies and version if not
version = (
Expand Down Expand Up @@ -291,6 +295,17 @@ def get_extensions():
["-O3" if not debug_mode else "-O0", "-fdiagnostics-color=always"]
)

if use_cpp_avx512 and TORCH_VERSION_AT_LEAST_2_7:
if torch._C._cpu._is_avx512_supported():
extra_compile_args["cxx"].extend(
[
"-DCPU_CAPABILITY_AVX512",
"-march=native",
"-mfma",
"-fopenmp",
]
)

if debug_mode:
extra_compile_args["cxx"].append("-g")
if "nvcc" in extra_compile_args:
Expand Down Expand Up @@ -344,6 +359,12 @@ def get_extensions():

# Collect C++ source files
sources = list(glob.glob(os.path.join(extensions_dir, "**/*.cpp"), recursive=True))
if IS_WINDOWS:
# Remove csrc/cpu/*.cpp on Windows due to the link issue: unresolved external symbol PyInit__C
excluded_sources = list(
glob.glob(os.path.join(extensions_dir, "cpu/*.cpp"), recursive=True)
)
sources = [s for s in sources if s not in excluded_sources]

# Collect CUDA source files
extensions_cuda_dir = os.path.join(extensions_dir, "cuda")
Expand Down
217 changes: 217 additions & 0 deletions test/prototype/inductor/test_int8_sdpa_fusion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
import itertools

import pytest
import torch
import torch.utils.checkpoint
from torch._dynamo.utils import counters
from torch._inductor import config
from torch._inductor.test_case import TestCase, run_tests
from torch._inductor.utils import run_and_get_code
from torch.testing._internal.common_utils import IS_LINUX, skipIfRocm
from torch.testing._internal.inductor_utils import HAS_CPU
from torch.utils.cpp_extension import IS_WINDOWS

import torchao
from torchao.prototype.inductor.fx_passes.int8_sdpa_fusion import _int8_sdpa_init
from torchao.utils import TORCH_VERSION_AT_LEAST_2_7


class SelfAttnLikeModule(torch.nn.Module):
def __init__(
self,
input_dim,
has_mask,
num_attention_heads=None,
attention_head_size=None,
) -> None:
super().__init__()
self.input_dim = input_dim
self.q_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.k_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.v_proj = torch.nn.Linear(input_dim, input_dim, bias=False)
self.softmax = torch.nn.Softmax(dim=-1)
assert num_attention_heads is not None
assert attention_head_size is not None
self.num_attention_heads = num_attention_heads
self.attention_head_size = attention_head_size
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.dense = torch.nn.Linear(self.all_head_size, self.all_head_size)
self.dropout = torch.nn.Dropout(0)
self.has_mask = has_mask

def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(new_x_shape)
return x.permute([0, 2, 1, 3])

def forward(self, x, mask):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
q = self.transpose_for_scores(q)
k = self.transpose_for_scores(k)
v = self.transpose_for_scores(v)
scores = torch.matmul(q, k.transpose(-1, -2)) / (self.input_dim**0.5)
if self.has_mask and mask.dtype != scores.dtype:
scores = scores + mask
attention = self.softmax(scores)
attention = self.dropout(attention)
context_layer = torch.matmul(attention, v)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
context_layer = context_layer.view(
context_layer.size()[:-2] + (self.all_head_size,)
)
return self.dense(context_layer)


class TestSDPAPatternRewriterTemplate(TestCase):
def _clone_inputs(self, inputs):
def clone(x):
if not isinstance(x, torch.Tensor):
return x
return x.clone()

return [clone(x) for x in inputs]

def _check_common(
self,
dot_prod_attention,
args1=None,
contains=True,
atol=1e-5,
has_fuse_pattern=True,
has_dropout=False,
check_train=True,
override_check_equal=False,
dtype=torch.float,
rtol=1.3e-6,
):
if args1 is None:
tensor_shape = (4, 2, 16, 32)
args1 = [
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
torch.randn(tensor_shape, device=self.device, dtype=dtype),
]
else:
args1 = list(args1)
args2 = self._clone_inputs(args1)

for training in [False, True] if check_train else [False]:
for x in itertools.chain(args1[:], args2[:]):
if isinstance(x, torch.Tensor) and x.is_floating_point():
x.requires_grad = training

dropout_arg = [training] if has_dropout else []
torch.manual_seed(1234)
result1 = dot_prod_attention(*(args1 + dropout_arg))

counters.clear()
torch.manual_seed(1234)
compiled_model = torch.compile(dot_prod_attention, fullgraph=True)
result2, source_code = run_and_get_code(
compiled_model,
*(args2 + dropout_arg),
)
source_code = "\n".join(source_code)
if has_fuse_pattern:
self.assertGreaterEqual(counters["inductor"]["int8_fuse_attention"], 1)
if contains:
# many of the patterns get re-expanded in dispatcher
self.assertIn(
"torchao.scaled_dot_product_int8",
source_code,
)

# some tests configured with very low dropout where we still want to check equality
if not has_dropout or override_check_equal:
self.assertEqual(result1, result2, atol=atol, rtol=1.3e-6)

if training:
result1.sum().backward()
result2.sum().backward()
for arg1, arg2 in zip(args1, args2):
if (
isinstance(arg1, torch.Tensor)
and arg1.is_floating_point()
and (not has_dropout or override_check_equal)
):
self.assertEqual(arg1.grad, arg2.grad, atol=atol, rtol=rtol)

@skipIfRocm
@pytest.mark.skipif(
not TORCH_VERSION_AT_LEAST_2_7, reason="int8 sdpa requires torch 2.7 or later"
)
@pytest.mark.skipif(IS_WINDOWS, reason="int8 sdpa does not support windows yet")
@config.patch({"freezing": True})
def _test_sdpa_int8_rewriter(self):
from torch.export import export_for_training

import torchao.quantization.pt2e.quantizer.x86_inductor_quantizer as xiq
from torchao.quantization.pt2e.quantize_pt2e import convert_pt2e, prepare_pt2e
from torchao.quantization.pt2e.quantizer.x86_inductor_quantizer import (
X86InductorQuantizer,
)

# pattern is different for bs=1
torch.manual_seed(1234)
for dtype, has_mask, bs in itertools.product(
[torch.float32, torch.bfloat16], [True, False], [56, 1]
):
seqlen, numhead, headsize = 197, 16, 64
mod = SelfAttnLikeModule(
input_dim=headsize * numhead,
has_mask=has_mask,
num_attention_heads=numhead,
attention_head_size=headsize,
).eval()
inputs = (
torch.randn(
(bs, seqlen, headsize * numhead), device=self.device, dtype=dtype
),
torch.randn((bs, 1, 1, seqlen), device=self.device)
if has_mask
else None,
)
enable_autocast = dtype == torch.bfloat16
with (
torch.no_grad(),
torch.amp.autocast(
self.device, enabled=enable_autocast, dtype=torch.bfloat16
),
):
_int8_sdpa_init()
quantizer = X86InductorQuantizer()
quantizer.set_global(xiq.get_default_x86_inductor_quantization_config())
quantizer.set_function_type_qconfig(
torch.matmul, quantizer.get_global_quantization_config()
)
export_model = export_for_training(
mod,
inputs,
strict=True,
).module()
prepare_model = prepare_pt2e(export_model, quantizer)
prepare_model(*inputs)
convert_model = convert_pt2e(prepare_model)
torchao.quantization.pt2e.move_exported_model_to_eval(convert_model)
self._check_common(
convert_model, args1=inputs, check_train=False, atol=1.0
)


if HAS_CPU:

class SDPAPatternRewriterCpuTests(TestSDPAPatternRewriterTemplate):
device = "cpu"
test_sdpa_int8_rewriter_cpu = (
TestSDPAPatternRewriterTemplate._test_sdpa_int8_rewriter
)


if __name__ == "__main__":
if IS_LINUX:
run_tests()
Loading
Loading