Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Build] Guard per-op headers in ACLUtils.cpp #149417

Closed
wants to merge 1 commit into from

Conversation

malfet
Copy link
Contributor

@malfet malfet commented Mar 18, 2025

To fix internal build failures, where per-op headers are not generated.
We really should have lint for something like that.

Test Plan: CI

Reviewed By: izaitsevfb

Differential Revision: D71406882

cc @jgong5 @mingfeima @XiaobingSuper @sanchitintel @ashokei @jingxu10

Copy link

pytorch-bot bot commented Mar 18, 2025

🔗 Helpful Links

🧪 See artifacts and rendered test results at hud.pytorch.org/pr/149417

Note: Links to docs will display an error until the docs builds have been completed.

✅ You can merge normally! (1 Unrelated Failure)

As of commit b1adb55 with merge base dbea13e (image):

UNSTABLE - The following job is marked as unstable, possibly due to flakiness on trunk:

This comment was automatically generated by Dr. CI and updates every 15 minutes.

@pytorch-bot pytorch-bot bot added module: cpu CPU specific problem (e.g., perf, algorithm) release notes: quantization release notes category labels Mar 18, 2025
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D71406882

@pytorch-bot pytorch-bot bot added the ciflow/trunk Trigger trunk jobs on your pull request label Mar 18, 2025
Summary:
Pull Request resolved: pytorch#149417

In the future, we really should have lint for something like that

Test Plan: CI

Reviewed By: izaitsevfb

Differential Revision: D71406882
@facebook-github-bot
Copy link
Contributor

This pull request was exported from Phabricator. Differential Revision: D71406882

@malfet malfet force-pushed the export-D71406882 branch from c860a74 to b1adb55 Compare March 18, 2025 18:15
@facebook-github-bot
Copy link
Contributor

@pytorchbot merge

(Initiating merge automatically since Phabricator Diff has merged)

@pytorchmergebot
Copy link
Collaborator

Merge started

Your change will be merged once all checks pass (ETA 0-4 Hours).

Learn more about merging in the wiki.

Questions? Feedback? Please reach out to the PyTorch DevX Team

Advanced Debugging
Check the merge workflow status
here

fadara01 pushed a commit to fadara01/pytorch that referenced this pull request Mar 19, 2025
To fix internal build failures, where per-op headers are not generated.
We really should have lint for something like that.

Test Plan: CI

Reviewed By: izaitsevfb

Differential Revision: D71406882

Pull Request resolved: pytorch#149417
Approved by: https://github.com/Skylion007, https://github.com/izaitsevfb

(cherry picked from commit 5db3a4a)
pytorch-bot bot pushed a commit that referenced this pull request Mar 27, 2025
To fix internal build failures, where per-op headers are not generated.
We really should have lint for something like that.

Test Plan: CI

Reviewed By: izaitsevfb

Differential Revision: D71406882

Pull Request resolved: #149417
Approved by: https://github.com/Skylion007, https://github.com/izaitsevfb

(cherry picked from commit 5db3a4a)
malfet added a commit that referenced this pull request Mar 28, 2025
…ough ACL directly. (#149435)

* Enable fast qlinear static/dynamic path for AArch64 through ACL directly (#148585)

This enables a fast path for eager mode static/dynamic quantization for AArch64 through Arm Compute Library (ACL) directly.

Context: PRs #126687, #139887 enabled an optimized implementation for `qlinear` and `qlinear_dynamic` for aarch64 through `ideep → oneDNN → ACL` which improved performance by ~10x compared to the previous implementation.
However, the current `qlinear` and `qlinear_dynamic` path (`ideep → oneDNN → ACL`) suffers from high overhead due to the API friction between the stateless oneDNN API and the stateful ACL low-precision GEMM (`lowp_gemm`) API - for example, ACL's `lowp_gemm` objects cache information like weights reduction or weights in optimized memory format which oneDNN does not allow due to its stateless nature.
Hence, ACL currently runs a (redundant) sum of columns and pre-transposition (to the gemm kerne's optimal format) for each GEMM operation.
This PR addresses the sub-optimalities above by integrating ACL directly with `qlinear` and `qlinear_dynamic`.

- **For `qlinear_dynamic` (dynamically quantized matmuls):**

This PR yields an ****average speedup** (averaged over context_lengths of 2^3 up to 2^9) of ~ **50%** for `bert-base-uncased`, `bert-large-uncased`, `roberta-base`, `distilbert-base-uncased`** with 16 threads on a Neoverse-V1 (with transformers==4.48) for the benchmarking script below:
```
# SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliate <[email protected]>
# SPDX-License-Identifier: BSD-3-Clause
import torch
from transformers import AutoModel, AutoConfig
import time
import numpy as np
from argparse import ArgumentParser

class ModelArgumentParser(ArgumentParser):
    def __init__(self) -> None:
        super().__init__(description="huggingface model")
        self.add_argument("--context_length",
                            help="context length - number of input tokens",
                            type=int,
                            default=64
        )
        self.add_argument("--model",
                            help="model checkpoint - i.e. 'bert-base-uncased'",
                            type=str,
                            default=None)
        self.add_argument("--iters",
                          help="benchmark iterations",
                          default=500)

if __name__ == "__main__":
    parser = ModelArgumentParser()
    args = parser.parse_args()
    model_name = args.model
    config = AutoConfig.from_pretrained(model_name)
    batch_size = 1
    model = AutoModel.from_pretrained(model_name)
    model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
    model.eval()
    inputs = torch.randint(config.vocab_size, (batch_size, args.context_length), dtype=torch.long, device="cpu")
    times = []
    with torch.no_grad():
        # warmup
        for _ in range(10):
            model(inputs)
        # benchmark
        for _ in range(args.iters):
            s = time.time_ns()
            model(inputs)
            times.append((time.time_ns() - s) / 1e6)

    print("Model = ", model_name)
    print("Context Length = ", args.context_length)
    print("Min (ms) = ", min(times))
    print("Mean (ms) = ", np.mean(times))
```

- **For `qlinear` (statically quantized matmuls):**

This PR yields an **average speedup of 2x for signed activations (`s8s8s8`) and 95x for unsigned activations (u8s8u8)** on a Neoverse-V1 with 16 threads for the benchmarking script below.
The averages are over for all combinations of `M = [8, 16, ..., 512]`, `K = [768, 1024, 2048, 4096]`, `N = [768, 1024, 2048, 4096]`.
The astronomical speedup for unsigned activation is because oneDNN v3.7 does not have an optimized implementation for `u8s8u8` on AArch64.

```
# SPDX-FileCopyrightText: Copyright 2025 Arm Limited and/or its affiliate <[email protected]>
# SPDX-License-Identifier: BSD-3-Clause
import torch
import torch.nn as nn
from torch.quantization import QConfig
from torch.ao.quantization.observer import HistogramObserver, default_weight_observer
import torch
import torch.nn as nn
import numpy as np
import random
from argparse import ArgumentParser
import time

class ModelArgumentParser(ArgumentParser):
    def __init__(self) -> None:
        super().__init__()
        self.add_argument("--M",
                            help="M dimension",
                            type=int,
                            default=64
        )
        self.add_argument("--K",
                            help="K dimension",
                            type=int,
                            default=64
        )
        self.add_argument("--N",
                            help="N dimension",
                            type=int,
                            default=64
        )
        self.add_argument("--signed_input",
                            help="Use (signed) torch.qint8 for inputs instead of (unsigned) torch.quint8",
                            action="store_true"
        )
        self.add_argument("--seed",
                          help="Random seed",
                          type=int,
                          default=42
        )
        self.add_argument("--iters",
                          help="benchmark iterations",
                          default=500)

def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)

class LinearModel(nn.Module):
    def __init__(self, K, N):
        super(LinearModel, self).__init__()
        self.quant = torch.quantization.QuantStub()
        self.fc = nn.Linear(K, N)
        self.dequant = torch.quantization.DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.fc(x)
        x = self.dequant(x)
        return x

def quantize_model(model, args):
    qconfig = QConfig(
            activation=HistogramObserver.with_args(reduce_range=False,
            dtype=torch.qint8 if args.signed_input else torch.quint8),
            weight=default_weight_observer,
    )
    # Prepare the model for static quantization
    # Specify quantization configurations
    model.qconfig = qconfig
    model_prepared = torch.quantization.prepare(model_fp32)

    # Calibrate the model with sample inputs
    # Example input data for calibration
    with torch.no_grad():
        sample_data = torch.randn(args.M, args.K)
        model_prepared(sample_data)
    # Convert the prepared model to a quantized model
    model_quantized = torch.quantization.convert(model_prepared)
    return model_quantized

if __name__ == "__main__":
    parser = ModelArgumentParser()
    args = parser.parse_args()

    set_seed(args.seed)
    model_fp32 = LinearModel(args.K, args.N)
    model_quantized = quantize_model(model_fp32, args)

    inputs = torch.randn(args.M, args.K)
    times = []
    with torch.no_grad():
        # warmup
        for _ in range(10):
            model_quantized(inputs)
        # benchmark
        for _ in range(args.iters):
            s = time.time_ns()
            model_quantized(inputs)
            times.append((time.time_ns() - s) / 1e6)

    print("M,K,N,signed = ", args.M, args.K, args.N, args.signed_input)
    print("Min Times (ms) = ", min(times))
    print("Mean Times (ms) = ", np.mean(times))
```

Pull Request resolved: #148585
Approved by: https://github.com/malfet

Co-authored-by: Nikita Shulga <[email protected]>
(cherry picked from commit 08a644a)

* Enable qint8 and quint8 add for AArch64 using ACL directly (#148653)

This enables qint8 and quint8 add for AArch64 through Arm Compute Library (ACL) directly.
Relative performance improvement using OMP_NUM_THREADS=1 is ~15x, using OMP_NUM_THREADS=32 it’s ~5.4x.

Co-authored-by: David Svantesson <[email protected]>

Pull Request resolved: #148653
Approved by: https://github.com/malfet
ghstack dependencies: #148585

(cherry picked from commit 6c2db8f)

* [Build] Guard per-op headers in ACLUtils.cpp (#149417)

To fix internal build failures, where per-op headers are not generated.
We really should have lint for something like that.

Test Plan: CI

Reviewed By: izaitsevfb

Differential Revision: D71406882

Pull Request resolved: #149417
Approved by: https://github.com/Skylion007, https://github.com/izaitsevfb

(cherry picked from commit 5db3a4a)

---------

Co-authored-by: Nikita Shulga <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ciflow/trunk Trigger trunk jobs on your pull request fb-exported Merged module: cpu CPU specific problem (e.g., perf, algorithm) release notes: quantization release notes category
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants