Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Versioning] Bump torch 2.0 as minimal version #2200

Merged
merged 21 commits into from
Jun 10, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/unittest/linux_libs/scripts_gym/install.sh
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ git submodule sync && git submodule update --init --recursive

printf "Installing PyTorch with %s\n" "${CU_VERSION}"
if [ "${CU_VERSION:-}" == cpu ] ; then
conda install pytorch==1.13.1 torchvision==0.14.1 cpuonly -c pytorch
conda install pytorch==2.0 torchvision==0.15 cpuonly -c pytorch
else
conda install pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.6 -c pytorch -c nvidia -y
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
fi

# Solving circular import: https://stackoverflow.com/questions/75501048/how-to-fix-attributeerror-partially-initialized-module-charset-normalizer-has
Expand Down
4 changes: 2 additions & 2 deletions .github/unittest/linux_olddeps/scripts_gym_0_13/install.sh
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ git submodule sync && git submodule update --init --recursive

printf "Installing PyTorch with %s\n" "${CU_VERSION}"
if [ "${CU_VERSION:-}" == cpu ] ; then
conda install pytorch==1.13.1 torchvision==0.14.1 cpuonly -c pytorch
conda install pytorch==2.0 torchvision==0.15 cpuonly -c pytorch
else
conda install pytorch==1.13.1 torchvision==0.14.1 pytorch-cuda=11.6 -c pytorch -c nvidia -y
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.8 -c pytorch -c nvidia
fi

# Solving circular import: https://stackoverflow.com/questions/75501048/how-to-fix-attributeerror-partially-initialized-module-charset-normalizer-has
Expand Down
3 changes: 0 additions & 3 deletions .github/unittest/linux_optdeps/scripts/install.sh
Original file line number Diff line number Diff line change
Expand Up @@ -29,9 +29,6 @@ else
pip3 install tensordict
fi

# smoke test
python -c "import functorch"

printf "* Installing torchrl\n"
python setup.py develop

Expand Down
2 changes: 1 addition & 1 deletion docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ Installation

TorchRL releases are synced with PyTorch, so make sure you always enjoy the latest
features of the library with the `most recent version of PyTorch <https://pytorch.org/get-started/locally/>`__ (although core features
are guaranteed to be backward compatible with pytorch>=1.13).
are guaranteed to be backward compatible with pytorch>=2.0).
Nightly releases can be installed via

.. code-block::
Expand Down
2 changes: 1 addition & 1 deletion knowledge_base/VERSIONING_ISSUES.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Versioning Issues

## Pytorch version
This issue is related to https://github.com/pytorch/rl/issues/689. Using PyTorch versions <1.13 and installing stable package leads to undefined symbol errors. For example:
This issue is related to https://github.com/pytorch/rl/issues/689. Using PyTorch versions <2.0 and installing stable package leads to undefined symbol errors. For example:
```
ImportError: /usr/local/lib/python3.7/dist-packages/torchrl/_torchrl.so: undefined symbol: _ZN8pybind116detail11type_casterIN2at6TensorEvE4loadENS_6handleEb
```
Expand Down
8 changes: 7 additions & 1 deletion test/test_env.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@
from torchrl.envs.batched_envs import _stackable
from torchrl.envs.gym_like import default_info_dict_reader
from torchrl.envs.libs.dm_control import _has_dmc, DMControlEnv
from torchrl.envs.libs.gym import _has_gym, GymEnv, GymWrapper
from torchrl.envs.libs.gym import _has_gym, gym_backend, GymEnv, GymWrapper
from torchrl.envs.transforms import Compose, StepCounter, TransformedEnv
from torchrl.envs.transforms.transforms import AutoResetEnv, AutoResetTransform
from torchrl.envs.utils import (
Expand Down Expand Up @@ -203,6 +203,12 @@ def test_env_seed(env_name, frame_skip, seed=0):
@pytest.mark.parametrize("env_name", [PENDULUM_VERSIONED, PONG_VERSIONED])
@pytest.mark.parametrize("frame_skip", [1, 4])
def test_rollout(env_name, frame_skip, seed=0):
if env_name is PONG_VERSIONED and version.parse(
gym_backend().__version__
) < version.parse("0.19"):
# Then 100 steps in pong are not sufficient to detect a difference
pytest.skip("can't detect difference in gym rollout with this gym version.")

env_name = env_name()
env = GymEnv(env_name, frame_skip=frame_skip)

Expand Down
7 changes: 3 additions & 4 deletions test/test_libs.py
Original file line number Diff line number Diff line change
Expand Up @@ -2823,16 +2823,15 @@ def _minari_selected_datasets():
_MINARI_DATASETS += keys


_minari_selected_datasets()


@pytest.mark.skipif(not _has_minari or not _has_gymnasium, reason="Minari not found")
@pytest.mark.slow
class TestMinari:
@pytest.mark.parametrize("split", [False, True])
@pytest.mark.parametrize("selected_dataset", _MINARI_DATASETS)
def test_load(self, selected_dataset, split):
global _MINARI_DATASETS
if not _MINARI_DATASETS:
_minari_selected_datasets()

torchrl_logger.info(f"dataset {selected_dataset}")
data = MinariExperienceReplay(
selected_dataset, batch_size=32, split_trajs=split
Expand Down
4 changes: 2 additions & 2 deletions test/test_modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -841,7 +841,7 @@ def test_multiagent_mlp_lazy(self):
share_params=False,
depth=2,
)
optim = torch.optim.SGD(mlp.parameters())
optim = torch.optim.SGD(mlp.parameters(), lr=1e-3)
for p in mlp.parameters():
if isinstance(p, torch.nn.parameter.UninitializedParameter):
break
Expand Down Expand Up @@ -975,7 +975,7 @@ def test_multiagent_cnn_lazy(self):
in_features=None,
kernel_sizes=3,
)
optim = torch.optim.SGD(cnn.parameters())
optim = torch.optim.SGD(cnn.parameters(), lr=1e-3)
for p in cnn.parameters():
if isinstance(p, torch.nn.parameter.UninitializedParameter):
break
Expand Down
20 changes: 18 additions & 2 deletions test/test_rb.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@
StorageEnsemble,
TensorStorage,
)
from torchrl.data.replay_buffers.utils import tree_iter
from torchrl.data.replay_buffers.writers import (
RoundRobinWriter,
TensorDictMaxValueWriter,
Expand Down Expand Up @@ -880,7 +881,7 @@ def test_extend_list_pytree(self, max_size, shape, storage):
assert len(memory) == 10
assert len(memory._storage) == 10
sample = memory.sample(10)
for leaf in torch.utils._pytree.tree_leaves(sample):
for leaf in tree_iter(sample):
assert (leaf.unique(sorted=True) == torch.arange(10)).all()
memory = ReplayBuffer(
storage=storage(max_size=max_size),
Expand Down Expand Up @@ -2961,7 +2962,7 @@ def test_rb_multidim(self, datatype, datadim, rbtype, storage_cls, sampler_cls):
assert (s.exclude("index") == 1).all()
assert s.numel() == 4
else:
for leaf in torch.utils._pytree.tree_leaves(s):
for leaf in tree_iter(s):
assert leaf.shape[0] == 4
assert (leaf == 1).all()

Expand Down Expand Up @@ -3122,6 +3123,13 @@ def test_simple_env(self, storage_type, checkpointer, tmpdir):
)
rb = ReplayBuffer(storage=storage_type(100))
rb_test = ReplayBuffer(storage=storage_type(100))
if torch.__version__ < "2.4.0" and checkpointer in (
H5StorageCheckpointer,
NestedStorageCheckpointer,
):
with pytest.raises(ValueError, match="Unsupported torch version"):
checkpointer()
return
rb.storage.checkpointer = checkpointer()
rb_test.storage.checkpointer = checkpointer()
for data in collector:
Expand All @@ -3144,12 +3152,20 @@ def test_multi_env(self, storage_type, checkpointer, tmpdir):
)
rb = ReplayBuffer(storage=storage_type(100, ndim=2))
rb_test = ReplayBuffer(storage=storage_type(100, ndim=2))
if torch.__version__ < "2.4.0" and checkpointer in (
H5StorageCheckpointer,
NestedStorageCheckpointer,
):
with pytest.raises(ValueError, match="Unsupported torch version"):
checkpointer()
return
rb.storage.checkpointer = checkpointer()
rb_test.storage.checkpointer = checkpointer()
for data in collector:
rb.extend(data)
assert rb._storage.max_size == 102
rb.dumps(tmpdir)
rb.dumps(tmpdir)
rb_test.loads(tmpdir)
assert_allclose_td(rb_test[:], rb[:])

Expand Down
12 changes: 7 additions & 5 deletions torchrl/data/replay_buffers/samplers.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@

from torchrl._utils import _replace_last, implement_for, logger
from torchrl.data.replay_buffers.storages import Storage, StorageEnsemble, TensorStorage
from torchrl.data.replay_buffers.utils import _is_int
from torchrl.data.replay_buffers.utils import _is_int, unravel_index

try:
from torchrl._torchrl import (
Expand Down Expand Up @@ -204,7 +204,9 @@ def _single_sample(self, len_storage, batch_size):
def _storage_len(self, storage):
return len(storage)

def sample(self, storage: Storage, batch_size: int) -> Tuple[Any, dict]:
def sample(
self, storage: Storage, batch_size: int
) -> Tuple[Any, dict]: # noqa: F811
len_storage = self._storage_len(storage)
if len_storage == 0:
raise RuntimeError(_EMPTY_STORAGE_ERROR)
Expand All @@ -221,7 +223,7 @@ def sample(self, storage: Storage, batch_size: int) -> Tuple[Any, dict]:
self.len_storage = len_storage
index = self._single_sample(len_storage, batch_size)
if storage.ndim > 1:
index = torch.unravel_index(index, storage.shape)
index = unravel_index(index, storage.shape)
# we 'always' return the indices. The 'drop_last' just instructs the
# sampler to turn to `ran_out = True` whenever the next sample
# will be too short. This will be read by the replay buffer
Expand Down Expand Up @@ -470,7 +472,7 @@ def sample(self, storage: Storage, batch_size: int) -> torch.Tensor:
# weight = np.power(weight / (p_min + self._eps), -self._beta)
weight = torch.pow(weight / p_min, -self._beta)
if storage.ndim > 1:
index = torch.unravel_index(index, storage.shape)
index = unravel_index(index, storage.shape)
return index, {"_weight": weight}

return index, {"_weight": weight}
Expand Down Expand Up @@ -1807,7 +1809,7 @@ def sample(self, storage: Storage, batch_size: int) -> Tuple[torch.Tensor, dict]
if storage.ndim > 1:
# we need to convert indices of the permuted, flatten storage to indices in a flatten storage (not permuted)
# This is because the lengths come as they would for a permuted storage
preceding_stop_idx = torch.unravel_index(
preceding_stop_idx = unravel_index(
preceding_stop_idx, (storage.shape[-1], *storage.shape[:-1])
)
preceding_stop_idx = (preceding_stop_idx[-1], *preceding_stop_idx[:-1])
Expand Down
15 changes: 9 additions & 6 deletions torchrl/data/replay_buffers/storages.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,15 +25,19 @@
from tensordict.memmap import MemoryMappedTensor
from torch import multiprocessing as mp
from torch.utils._pytree import tree_flatten, tree_map, tree_unflatten

from torchrl._utils import implement_for, logger as torchrl_logger
from torchrl.data.replay_buffers.checkpointers import (
ListStorageCheckpointer,
StorageCheckpointerBase,
StorageEnsembleCheckpointer,
TensorStorageCheckpointer,
)
from torchrl.data.replay_buffers.utils import _init_pytree, _is_int, INT_CLASSES
from torchrl.data.replay_buffers.utils import (
_init_pytree,
_is_int,
INT_CLASSES,
tree_iter,
)


class Storage:
Expand Down Expand Up @@ -425,7 +429,7 @@ def _total_shape(self):
if is_tensor_collection(self._storage):
_total_shape = self._storage.shape[: self.ndim]
else:
leaf, *_ = torch.utils._pytree.tree_leaves(self._storage)
leaf = next(tree_iter(self._storage))
_total_shape = leaf.shape[: self.ndim]
self.__dict__["_total_shape_value"] = _total_shape
return _total_shape
Expand Down Expand Up @@ -462,7 +466,7 @@ def _max_size_along_dim0(self, *, single_data=None, batched_data=None):
if is_tensor_collection(data):
datashape = data.shape[: self.ndim]
else:
for leaf in torch.utils._pytree.tree_leaves(data):
for leaf in tree_iter(data):
datashape = leaf.shape[: self.ndim]
break
if batched_data is not None:
Expand Down Expand Up @@ -615,8 +619,7 @@ def _get_new_len(self, data, cursor):
if is_tensor_collection(data) or isinstance(data, torch.Tensor):
numel = data.shape[:ndim].numel()
else:
# unfortunately tree_flatten isn't an iterator so we will have to flatten it all
leaf, *_ = torch.utils._pytree.tree_leaves(data)
leaf = next(tree_iter(data))
numel = leaf.shape[:ndim].numel()
self._len = min(self._len + numel, self.max_size)

Expand Down
71 changes: 71 additions & 0 deletions torchrl/data/replay_buffers/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,8 +6,10 @@
from __future__ import annotations

import contextlib
import itertools

import math
import operator
import os
import typing
from pathlib import Path
Expand Down Expand Up @@ -597,6 +599,14 @@ class TED2Nested(TED2Flat):
_shift: int = None
_is_full: bool = None

def __init__(self, *args, **kwargs):
if not hasattr(torch, "_nested_compute_contiguous_strides_offsets"):
raise ValueError(
f"Unsupported torch version {torch.__version__}. "
f"torch>=2.4 is required for {type(self).__name__} to be used."
)
return super().__init__(*args, **kwargs)

def __call__(self, data: TensorDictBase, path: Path = None):
data = super().__call__(data, path=path)

Expand Down Expand Up @@ -949,3 +959,64 @@ def _roll_inplace(tensor, shift, out, index_dest=None, index_source=None):
slice1 = out[:-slice0_shift]
slice1.copy_(source1)
return out


# Copy-paste of unravel-index for PT 2.0
def _unravel_index(
indices: Tensor, shape: Union[int, typing.Sequence[int], torch.Size]
) -> typing.Tuple[Tensor, ...]:
res_tensor = _unravel_index_impl(indices, shape)
return res_tensor.unbind(-1)


def _unravel_index_impl(
indices: Tensor, shape: Union[int, typing.Sequence[int]]
) -> Tensor:
if isinstance(shape, (int, torch.SymInt)):
shape = torch.Size([shape])
else:
shape = torch.Size(shape)

coefs = list(
reversed(
list(
itertools.accumulate(
reversed(shape[1:] + torch.Size([1])), func=operator.mul
)
)
)
)
return indices.unsqueeze(-1).floor_divide(
torch.tensor(coefs, device=indices.device, dtype=torch.int64)
) % torch.tensor(shape, device=indices.device, dtype=torch.int64)


@implement_for("torch", None, "2.2")
def unravel_index(indices, shape):
"""A version-compatible wrapper around torch.unravel_index."""
return _unravel_index(indices, shape)


@implement_for("torch", "2.2")
def unravel_index(indices, shape): # noqa: F811
"""A version-compatible wrapper around torch.unravel_index."""
return torch.unravel_index(indices, shape)


@implement_for("torch", None, "2.3")
def tree_iter(pytree):
"""A version-compatible wrapper around tree_iter."""
flat_tree, _ = torch.utils._pytree.tree_flatten(pytree)
yield from flat_tree


@implement_for("torch", "2.3", "2.4")
def tree_iter(pytree): # noqa: F811
"""A version-compatible wrapper around tree_iter."""
yield from torch.utils._pytree.tree_leaves(pytree)


@implement_for("torch", "2.4")
def tree_iter(pytree): # noqa: F811
"""A version-compatible wrapper around tree_iter."""
yield from torch.utils._pytree.tree_iter(pytree)
2 changes: 1 addition & 1 deletion torchrl/modules/tensordict_module/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -445,7 +445,7 @@ class VmapModule(TensorDictModuleBase):

def __init__(self, module: TensorDictModuleBase, vmap_dim=None):
if not _has_functorch:
raise ImportError("VmapModule requires torch>=1.13.")
raise ImportError("VmapModule requires torch>=2.0.")
super().__init__()
self.in_keys = module.in_keys
self.out_keys = module.out_keys
Expand Down
2 changes: 1 addition & 1 deletion torchrl/objectives/value/advantages.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
from functorch import vmap
except ImportError:
raise ImportError(
"vmap couldn't be found. Make sure you have torch>1.13 installed."
"vmap couldn't be found. Make sure you have torch>2.0 installed."
) from err


Expand Down
Loading