-
Notifications
You must be signed in to change notification settings - Fork 270
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
413 additions
and
85 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,394 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
# This code is based on src/transformers/modeling_attn_mask_utils.py of | ||
# huggingface/transformers. It has been modified from its original forms to | ||
# contain only the necessary utilities. | ||
|
||
# Copyright 2023 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from dataclasses import dataclass | ||
from typing import List, Optional, Tuple, Union | ||
|
||
import torch | ||
|
||
|
||
@dataclass | ||
class AttentionMaskConverter: | ||
""" | ||
A utility attention mask class that allows one to: | ||
- Create a causal 4d mask | ||
- Create a causal 4d mask with slided window | ||
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, | ||
key_value_length) that can be multiplied with attention scores | ||
Examples: | ||
```python | ||
>>> import torch | ||
>>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter | ||
>>> converter = AttentionMaskConverter(True) | ||
>>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32) | ||
tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | ||
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | ||
[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], | ||
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38], | ||
[-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]]) | ||
``` | ||
Parameters: | ||
is_causal (`bool`): | ||
Whether the attention mask should be a uni-directional (causal) or bi-directional mask. | ||
sliding_window (`int`, *optional*): | ||
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. | ||
""" | ||
|
||
is_causal: bool | ||
sliding_window: int | ||
|
||
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): | ||
self.is_causal = is_causal | ||
self.sliding_window = sliding_window | ||
|
||
if self.sliding_window is not None and self.sliding_window <= 0: | ||
raise ValueError( | ||
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" | ||
) | ||
|
||
def to_causal_4d( | ||
self, | ||
batch_size: int, | ||
query_length: int, | ||
key_value_length: int, | ||
dtype: torch.dtype, | ||
device: Union[torch.device, "str"] = "cpu", | ||
) -> Optional[torch.Tensor]: | ||
""" | ||
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative | ||
bias to upper right hand triangular matrix (causal mask). | ||
""" | ||
if not self.is_causal: | ||
raise ValueError( | ||
f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True." | ||
) | ||
|
||
# If shape is not cached, create a new causal mask and cache it | ||
input_shape = (batch_size, query_length) | ||
past_key_values_length = key_value_length - query_length | ||
|
||
# create causal mask | ||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | ||
causal_4d_mask = None | ||
if input_shape[-1] > 1 or self.sliding_window is not None: | ||
causal_4d_mask = self._make_causal_mask( | ||
input_shape, | ||
dtype, | ||
device=device, | ||
past_key_values_length=past_key_values_length, | ||
sliding_window=self.sliding_window, | ||
) | ||
|
||
return causal_4d_mask | ||
|
||
def to_4d( | ||
self, | ||
attention_mask_2d: torch.Tensor, | ||
query_length: int, | ||
dtype: torch.dtype, | ||
key_value_length: Optional[int] = None, | ||
) -> torch.Tensor: | ||
""" | ||
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, | ||
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is | ||
causal, a causal mask will be added. | ||
""" | ||
input_shape = (attention_mask_2d.shape[0], query_length) | ||
|
||
# create causal mask | ||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | ||
causal_4d_mask = None | ||
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: | ||
if key_value_length is None: | ||
raise ValueError( | ||
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." | ||
) | ||
|
||
past_key_values_length = key_value_length - query_length | ||
causal_4d_mask = self._make_causal_mask( | ||
input_shape, | ||
dtype, | ||
device=attention_mask_2d.device, | ||
past_key_values_length=past_key_values_length, | ||
sliding_window=self.sliding_window, | ||
) | ||
elif self.sliding_window is not None: | ||
raise NotImplementedError( | ||
"Sliding window is currently only implemented for causal masking" | ||
) | ||
|
||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | ||
expanded_attn_mask = self._expand_mask( | ||
attention_mask_2d, dtype, tgt_len=input_shape[-1] | ||
).to(attention_mask_2d.device) | ||
|
||
if causal_4d_mask is not None: | ||
expanded_attn_mask = causal_4d_mask.masked_fill( | ||
expanded_attn_mask.bool(), torch.finfo(dtype).min | ||
) | ||
|
||
# expanded_attn_mask + causal_4d_mask can cause some overflow | ||
expanded_4d_mask = expanded_attn_mask | ||
|
||
return expanded_4d_mask | ||
|
||
@staticmethod | ||
def _make_causal_mask( | ||
input_ids_shape: torch.Size, | ||
dtype: torch.dtype, | ||
device: torch.device, | ||
past_key_values_length: int = 0, | ||
sliding_window: Optional[int] = None, | ||
): | ||
""" | ||
Make causal mask used for bi-directional self-attention. | ||
""" | ||
bsz, tgt_len = input_ids_shape | ||
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) | ||
mask_cond = torch.arange(mask.size(-1), device=device) | ||
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) | ||
|
||
mask = mask.to(dtype) | ||
|
||
if past_key_values_length > 0: | ||
mask = torch.cat( | ||
[ | ||
torch.zeros( | ||
tgt_len, past_key_values_length, dtype=dtype, device=device | ||
), | ||
mask, | ||
], | ||
dim=-1, | ||
) | ||
|
||
# add lower triangular sliding window mask if necessary | ||
if sliding_window is not None: | ||
diagonal = past_key_values_length - sliding_window - 1 | ||
|
||
context_mask = torch.tril( | ||
torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal | ||
) | ||
mask.masked_fill_(context_mask, torch.finfo(dtype).min) | ||
|
||
return mask[None, None, :, :].expand( | ||
bsz, 1, tgt_len, tgt_len + past_key_values_length | ||
) | ||
|
||
@staticmethod | ||
def _expand_mask( | ||
mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None | ||
): | ||
""" | ||
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. | ||
""" | ||
bsz, src_len = mask.size() | ||
tgt_len = tgt_len if tgt_len is not None else src_len | ||
|
||
expanded_mask = ( | ||
mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) | ||
) | ||
|
||
inverted_mask = 1.0 - expanded_mask | ||
|
||
return inverted_mask.masked_fill( | ||
inverted_mask.to(torch.bool), torch.finfo(dtype).min | ||
) | ||
|
||
@staticmethod | ||
def _unmask_unattended( | ||
expanded_mask: torch.FloatTensor, | ||
min_dtype: float, | ||
): | ||
# fmt: off | ||
""" | ||
Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when | ||
using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. | ||
Details: https://github.com/pytorch/pytorch/issues/110213 | ||
`expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. | ||
`attention_mask` is [bsz, src_seq_len]. | ||
The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. | ||
For example, if `expanded_mask` is (e.g. here left-padding case) | ||
``` | ||
[[[[0, 0, 0], | ||
[0, 0, 0], | ||
[0, 0, 1]]], | ||
[[[1, 0, 0], | ||
[1, 1, 0], | ||
[1, 1, 1]]], | ||
[[[0, 0, 0], | ||
[0, 1, 0], | ||
[0, 1, 1]]]] | ||
``` | ||
then the modified `expanded_mask` will be | ||
``` | ||
[[[[1, 1, 1], <-- modified | ||
[1, 1, 1], <-- modified | ||
[0, 0, 1]]], | ||
[[[1, 0, 0], | ||
[1, 1, 0], | ||
[1, 1, 1]]], | ||
[[[1, 1, 1], <-- modified | ||
[0, 1, 0], | ||
[0, 1, 1]]]] | ||
``` | ||
""" | ||
# fmt: on | ||
if expanded_mask.dtype == torch.bool: | ||
raise ValueError( | ||
"AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor." | ||
) | ||
|
||
return expanded_mask.mul( | ||
~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True) | ||
) | ||
|
||
@staticmethod | ||
def _ignore_causal_mask_sdpa( | ||
attention_mask: Optional[torch.Tensor], | ||
inputs_embeds: torch.Tensor, | ||
past_key_values_length: int, | ||
sliding_window: Optional[int] = None, | ||
is_training: bool = False, | ||
) -> bool: | ||
""" | ||
Detects whether the optional user-specified attention_mask & the automatically created causal mask can be | ||
ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument. | ||
In case no token is masked in the `attention_mask` argument, if `query_length == 1` or | ||
`key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks, | ||
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is | ||
passed). | ||
""" | ||
|
||
_, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1] | ||
key_value_length = query_length + past_key_values_length | ||
|
||
is_tracing = ( | ||
torch.jit.is_tracing() | ||
or isinstance(inputs_embeds, torch.fx.Proxy) | ||
or is_torchdynamo_compiling() | ||
) | ||
|
||
ignore_causal_mask = False | ||
|
||
if attention_mask is None: | ||
# TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input | ||
# shape, thus SDPA's `is_causal` argument is rightfully updated | ||
# (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using | ||
# `torch.export` or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is | ||
# hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` | ||
# which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108). | ||
# Thus, we only set `ignore_causal_mask = True` if the model is set to training. | ||
# | ||
# Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` | ||
# ("TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor"). | ||
if ( | ||
(is_training or not is_tracing) | ||
and (query_length == 1 or key_value_length == query_length) | ||
and (sliding_window is None or key_value_length < sliding_window) | ||
): | ||
ignore_causal_mask = True | ||
elif sliding_window is None or key_value_length < sliding_window: | ||
if len(attention_mask.shape) == 4: | ||
return False | ||
elif not is_tracing and torch.all(attention_mask == 1): | ||
if query_length == 1 or key_value_length == query_length: | ||
# For query_length == 1, causal attention and bi-directional attention are the same. | ||
ignore_causal_mask = True | ||
|
||
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore | ||
# the attention mask, as SDPA causal mask generation may be wrong. We will set `is_causal=False` in | ||
# SDPA and rely on Transformers attention_mask instead, hence not setting it to None here. | ||
# Reference: https://github.com/pytorch/pytorch/issues/108108 | ||
# TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3. | ||
|
||
return ignore_causal_mask | ||
|
||
|
||
def _prepare_4d_causal_attention_mask( | ||
attention_mask: Optional[torch.Tensor], | ||
input_shape: Union[torch.Size, Tuple, List], | ||
inputs_embeds: torch.Tensor, | ||
past_key_values_length: int, | ||
sliding_window: Optional[int] = None, | ||
): | ||
""" | ||
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape | ||
`(batch_size, key_value_length)` | ||
Args: | ||
attention_mask (`torch.Tensor` or `None`): | ||
A 2D attention mask of shape `(batch_size, key_value_length)` | ||
input_shape (`tuple(int)` or `list(int)` or `torch.Size`): | ||
The input shape should be a tuple that defines `(batch_size, query_length)`. | ||
inputs_embeds (`torch.Tensor`): | ||
The embedded inputs as a torch Tensor. | ||
past_key_values_length (`int`): | ||
The length of the key value cache. | ||
sliding_window (`int`, *optional*): | ||
If the model uses windowed attention, a sliding window should be passed. | ||
""" | ||
attn_mask_converter = AttentionMaskConverter( | ||
is_causal=True, sliding_window=sliding_window | ||
) | ||
|
||
key_value_length = input_shape[-1] + past_key_values_length | ||
|
||
# 4d mask is passed through the layers | ||
if attention_mask is not None and len(attention_mask.shape) == 2: | ||
attention_mask = attn_mask_converter.to_4d( | ||
attention_mask, | ||
input_shape[-1], | ||
key_value_length=key_value_length, | ||
dtype=inputs_embeds.dtype, | ||
) | ||
elif attention_mask is not None and len(attention_mask.shape) == 4: | ||
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) | ||
if tuple(attention_mask.shape) != expected_shape: | ||
raise ValueError( | ||
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." | ||
) | ||
else: | ||
# if the 4D mask has correct shape - invert it and fill with negative infinity | ||
inverted_mask = 1.0 - attention_mask | ||
attention_mask = inverted_mask.masked_fill( | ||
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min | ||
) | ||
else: | ||
attention_mask = attn_mask_converter.to_causal_4d( | ||
input_shape[0], | ||
input_shape[-1], | ||
key_value_length, | ||
dtype=inputs_embeds.dtype, | ||
device=inputs_embeds.device, | ||
) | ||
|
||
return attention_mask |
Oops, something went wrong.