-
Notifications
You must be signed in to change notification settings - Fork 270
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ghstack-poisoned]
- Loading branch information
Showing
2 changed files
with
145 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from functools import partial | ||
|
||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
from torchtitan.config_manager import JobConfig | ||
from torchtitan.model_spec import ( | ||
apply_to_model_specs, | ||
BaseModelArgs, | ||
get_model_spec, | ||
ModelProtocol, | ||
ModelSpec, | ||
register_model_spec, | ||
) | ||
from torchtitan.models.llama import parallelize_llama, pipeline_llama | ||
from torchtitan.optimizer import ( | ||
build_lr_schedulers, | ||
build_optimizers, | ||
OptimizersContainer, | ||
) | ||
|
||
|
||
class FakeModel(ModelProtocol): | ||
@staticmethod | ||
def from_model_args(args: BaseModelArgs) -> nn.Module: | ||
return nn.Linear(8, 8) | ||
|
||
|
||
def fake_build_optimizers( | ||
model_parts: list[nn.Module], job_config: JobConfig | ||
) -> OptimizersContainer: | ||
optimizer_kwargs = { | ||
"lr": 0.1, | ||
"betas": (0.9, 0.95), | ||
"weight_decay": 0.1, | ||
"fused": True, | ||
"foreach": False, | ||
} | ||
return OptimizersContainer( | ||
model_parts=model_parts, | ||
optimizer_kwargs=optimizer_kwargs, | ||
name="Adam", | ||
) | ||
|
||
|
||
class TestModelSpec: | ||
def test_register_model_spec(self): | ||
fake_config = {"fake": None} | ||
spec = ModelSpec( | ||
name="fake", | ||
cls=FakeModel, | ||
config=fake_config, | ||
tokenizer="tiktoken", | ||
parallelize_fn=parallelize_llama, | ||
pipelining_fn=pipeline_llama, | ||
build_optimizers_fn=build_optimizers, | ||
build_lr_schedulers_fn=build_lr_schedulers, | ||
) | ||
register_model_spec(spec) | ||
new_spec = get_model_spec("fake") | ||
assert new_spec == spec | ||
|
||
with pytest.raises(ValueError): | ||
new_spec = get_model_spec("fake2") | ||
|
||
def test_optim_hook(self): | ||
fake_config = {"fake": None} | ||
spec = ModelSpec( | ||
name="fake2", | ||
cls=FakeModel, | ||
config=fake_config, | ||
tokenizer="tiktoken", | ||
parallelize_fn=parallelize_llama, | ||
pipelining_fn=pipeline_llama, | ||
build_optimizers_fn=fake_build_optimizers, | ||
build_lr_schedulers_fn=build_lr_schedulers, | ||
) | ||
register_model_spec(spec) | ||
new_spec = get_model_spec("fake2") | ||
|
||
# Demonstrate how to register a optimizer hook for all model specs | ||
hook_called = False | ||
|
||
def my_hook( | ||
optimizer: torch.optim.Optimizer, | ||
args, | ||
kwargs, | ||
model_parts: list[nn.Module], | ||
) -> None: | ||
nonlocal hook_called | ||
hook_called = True | ||
|
||
def register_optimizer_hook_to_spec(spec: ModelSpec) -> ModelSpec: | ||
# Create a closure to capture the original spec.build_optimizers_fn | ||
original_build_optimizers_fn = spec.build_optimizers_fn | ||
|
||
def my_build_optimizer_fn( | ||
model_parts: list[nn.Module], job_config: JobConfig | ||
) -> OptimizersContainer: | ||
optimizers = original_build_optimizers_fn(model_parts, job_config) | ||
optimizers.register_step_post_hook( | ||
partial(my_hook, model_parts=model_parts) | ||
) | ||
return optimizers | ||
|
||
spec.build_optimizers_fn = my_build_optimizer_fn | ||
|
||
apply_to_model_specs(register_optimizer_hook_to_spec) | ||
|
||
model = new_spec.cls.from_model_args(BaseModelArgs()) | ||
model_parts = [model] | ||
optimizers = new_spec.build_optimizers_fn(model_parts, JobConfig()) | ||
assert optimizers.optimizers[0].__class__.__name__ == "Adam" | ||
batch = torch.randn(8, 8) | ||
model(batch).sum().backward() | ||
assert not hook_called | ||
optimizers.step() | ||
assert hook_called |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters