- paper
- author's git repo
- A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty
- Xueliang's paper
- xiong's paper
- google's paper
- higuchi's paper
- python3
- pytorch
- kaldi
- matlab
- AudioLabs's rir generator
- (https://github.com/ehabets/RIR-Generator/blob/master/rir_generator.pdf)
- reverb challenge 2014 generator
- CHiME3's simulation code
- gnu parallel
- sox
- https://kr.mathworks.com/matlabcentral/fileexchange/23573-csvimport
- print (avg, max, median) of L2 norm
- gev BF
- add timer(of
- MVDR BF
- PESQ
- SNR
- F-score for each bin
cd your_kaldi/egs
git clone [email protected]:gogyzzz/heymann-nn-gev-bf.git
cd heymann-nn-gev-bf/s5
mylocal/prepare_noise.sh
mylocal/prepare_wsjcam0.sh
mylocal/prepare_mixed_wsjcam0.sh
matlab -nodesktop -nosplash -r \
"mix('ext/mixed/wsjcam0/si_dt/mixed.csv', 1024000); exit;"
mylocal/prepare_chime3.sh
# for pytorch dataset, dataloader
def wav_to_ibm(clean, noisy, channel=-1):
return (y_psd, x_psd, n_psd, x_mask, n_mask)
# psd normalization needed? -> no. just use batchnorm