Skip to content

A Pytorch implementation of 'Neural network based spectral mask estimation for acoustic beamforming'

Notifications You must be signed in to change notification settings

qinxiaoyi/heymann-nn-gev-bf

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 

Repository files navigation

his ppt on icassp 2016

references, tools

requirments

  • python3
  • pytorch
  • kaldi
  • matlab

tools

to do

  • print (avg, max, median) of L2 norm
  • gev BF
  • add timer(of
  • MVDR BF
  • PESQ
  • SNR
  • F-score for each bin

Installation

cd your_kaldi/egs
git clone [email protected]:gogyzzz/heymann-nn-gev-bf.git
cd heymann-nn-gev-bf/s5

Data preparation

mylocal/prepare_noise.sh

mylocal/prepare_wsjcam0.sh
mylocal/prepare_mixed_wsjcam0.sh

matlab -nodesktop -nosplash -r \
 "mix('ext/mixed/wsjcam0/si_dt/mixed.csv', 1024000); exit;"
 
mylocal/prepare_chime3.sh

Data preparation 2

# for pytorch dataset, dataloader

def wav_to_ibm(clean, noisy, channel=-1):
    return (y_psd, x_psd, n_psd, x_mask, n_mask)

# psd normalization needed? -> no. just use batchnorm



Exp. results

About

A Pytorch implementation of 'Neural network based spectral mask estimation for acoustic beamforming'

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 84.9%
  • Shell 15.1%