Real-ESRGAN-x4plus: Optimized for Mobile Deployment
Upscale images and remove image noise
Real-ESRGAN is a machine learning model that upscales an image with minimal loss in quality. The implementation is a derivative of the Real-ESRGAN-x4plus architecture, a larger and more powerful version compared to the Real-ESRGAN-general-x4v3 architecture.
This model is an implementation of Real-ESRGAN-x4plus found here.
This repository provides scripts to run Real-ESRGAN-x4plus on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Super resolution
- Model Stats:
- Number of parameters: 16.7M
- Model size: 67.1 MB
- Model checkpoint: RealESRGAN_x4plus
- Input resolution: 128x128
Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model |
---|---|---|---|---|---|---|---|---|
Real-ESRGAN-x4plus | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 68.744 ms | 0 - 116 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 65.698 ms | 0 - 213 MB | FP16 | NPU | Real-ESRGAN-x4plus.so |
Real-ESRGAN-x4plus | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 71.83 ms | 6 - 120 MB | FP16 | NPU | Real-ESRGAN-x4plus.onnx |
Real-ESRGAN-x4plus | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 50.067 ms | 3 - 112 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 50.681 ms | 0 - 108 MB | FP16 | NPU | Real-ESRGAN-x4plus.so |
Real-ESRGAN-x4plus | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 51.229 ms | 6 - 175 MB | FP16 | NPU | Real-ESRGAN-x4plus.onnx |
Real-ESRGAN-x4plus | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 43.102 ms | 3 - 137 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 42.524 ms | 0 - 131 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 43.429 ms | 6 - 134 MB | FP16 | NPU | Real-ESRGAN-x4plus.onnx |
Real-ESRGAN-x4plus | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 68.455 ms | 0 - 114 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 62.619 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | SA7255P ADP | SA7255P | TFLITE | 3550.388 ms | 0 - 136 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 66.47 ms | 0 - 116 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | SA8255 (Proxy) | SA8255P Proxy | QNN | 63.379 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | SA8295P ADP | SA8295P | TFLITE | 114.323 ms | 3 - 129 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | SA8295P ADP | SA8295P | QNN | 112.247 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 64.785 ms | 0 - 117 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | SA8650 (Proxy) | SA8650P Proxy | QNN | 63.079 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | SA8775P ADP | SA8775P | TFLITE | 132.83 ms | 3 - 137 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | SA8775P ADP | SA8775P | QNN | 131.059 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 154.329 ms | 3 - 109 MB | FP16 | NPU | Real-ESRGAN-x4plus.tflite |
Real-ESRGAN-x4plus | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 125.664 ms | 0 - 87 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 64.964 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
Real-ESRGAN-x4plus | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 65.69 ms | 39 - 39 MB | FP16 | NPU | Real-ESRGAN-x4plus.onnx |
Installation
This model can be installed as a Python package via pip.
pip install "qai-hub-models[real_esrgan_x4plus]"
Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token
.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.real_esrgan_x4plus.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.real_esrgan_x4plus.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.real_esrgan_x4plus.export
Profiling Results
------------------------------------------------------------
Real-ESRGAN-x4plus
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 68.7
Estimated peak memory usage (MB): [0, 116]
Total # Ops : 1025
Compute Unit(s) : NPU (1025 ops)
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace
and then call the submit_compile_job
API.
import torch
import qai_hub as hub
from qai_hub_models.models.real_esrgan_x4plus import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model
. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.real_esrgan_x4plus.demo --on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.real_esrgan_x4plus.demo -- --on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tflite
export): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.so
export ): This sample app provides instructions on how to use the.so
shared library in an Android application.
View on Qualcomm® AI Hub
Get more details on Real-ESRGAN-x4plus's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of Real-ESRGAN-x4plus can be found here.
- The license for the compiled assets for on-device deployment can be found here
References
- Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.