Skip to content

Speed up image cropping and resizing #58

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ The performance of each model variant using the pre-trained weights converted fr

* `Keras >= 2.2.0` / `TensorFlow >= 1.12.0`
* `keras_applications >= 1.0.7`
* `scikit-image`
* `opencv >= 3.4.2` or `scikit-image` (for resizing images; `opencv` seems to be faster)

### Installing from the source

Expand Down
82 changes: 60 additions & 22 deletions efficientnet/preprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,37 +13,75 @@
# limitations under the License.
# ==============================================================================
import numpy as np
from skimage.transform import resize
try:
import cv2
except ModuleNotFoundError:
import skimage.transform

MAP_INTERPOLATION_TO_ORDER = {
"nearest": 0,
"bilinear": 1,
"biquadratic": 2,
"bicubic": 3,
}

try:
# OpenCV: Map interpolation string to OpenCV interpolation enum value
INTERPOLATION_DICT = {
"nearest": cv2.INTER_NEAREST,
"bilinear": cv2.INTER_LINEAR,
"bicubic": cv2.INTER_CUBIC,
"laconzos": cv2.INTER_LANCZOS4,
}
except NameError:
# scikit-image: Map interpolation string to interpolation order
INTERPOLATION_DICT = {
"nearest": 0,
"bilinear": 1,
"biquadratic": 2,
"bicubic": 3,
}


def center_crop_and_resize(image, image_size, crop_padding=32, interpolation="bicubic"):
assert image.ndim in {2, 3}
assert interpolation in MAP_INTERPOLATION_TO_ORDER.keys()
assert interpolation in INTERPOLATION_DICT.keys()

in_h, in_w = image.shape[:2]

if isinstance(image_size, (int, float)):
out_h = out_w = image_size
else:
out_h, out_w = image_size

if isinstance(crop_padding, (int, float)):
crop_padding_h = crop_padding_w = crop_padding
else:
crop_padding_h, crop_padding_w = crop_padding

h, w = image.shape[:2]
padded_center_crop_shape_post_scaling = (out_h + crop_padding_h,
out_w + crop_padding_w)

padded_center_crop_size = int(
(image_size / (image_size + crop_padding)) * min(h, w)
)
offset_height = ((h - padded_center_crop_size) + 1) // 2
offset_width = ((w - padded_center_crop_size) + 1) // 2
inv_scale = min(in_h / padded_center_crop_shape_post_scaling[0],
in_w / padded_center_crop_shape_post_scaling[1])

unpadded_center_crop_size_pre_scaling = (round(out_h * inv_scale),
round(out_w * inv_scale))

offset_h = ((in_h - unpadded_center_crop_size_pre_scaling[0]) + 1) // 2
offset_w = ((in_w - unpadded_center_crop_size_pre_scaling[1]) + 1) // 2

image_crop = image[
offset_height: padded_center_crop_size + offset_height,
offset_width: padded_center_crop_size + offset_width,
offset_h : unpadded_center_crop_size_pre_scaling[0] + offset_h,
offset_w : unpadded_center_crop_size_pre_scaling[1] + offset_w,
]
resized_image = resize(
image_crop,
(image_size, image_size),
order=MAP_INTERPOLATION_TO_ORDER[interpolation],
preserve_range=True,
)

try:
resized_image = cv2.resize(
image_crop,
(out_w, out_h),
interpolation=INTERPOLATION_DICT[interpolation] if inv_scale < 1 else cv2.INTER_AREA,
)
except NameError:
resized_image = skimage.transform.resize(
image_crop,
(out_h, out_w),
order=INTERPOLATION_DICT[interpolation],
preserve_range=True,
)

return resized_image