Skip to content

rahmiberkayalp/python-data-analysis-mini-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

16 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Python Financial Data Analysis Mini Project

This project performs an exploratory data analysis (EDA) on a synthetic financial dataset containing daily closing prices for four exchange-traded funds (ETFs): ETF_A, ETF_B, ETF_C, ETF_D.
The goal is to demonstrate skills in Python, data cleaning, visualization, time-series analysis, returns, and correlations.


πŸ“ Files in This Repository

  • python_financial_data_analysis.ipynb β€” Main Jupyter Notebook performing the analysis
  • financial_data.csv β€” Synthetic price dataset (250 trading days Γ— 4 tickers)
  • README.md β€” Project explanation and documentation

πŸ”§ Tools & Libraries

  • Python
  • Pandas
  • NumPy
  • Matplotlib
  • (Optional) Seaborn

πŸ“Š Analysis Performed

  • Importing and cleaning financial price data
  • Pivoting data into time-series format
  • Visualizing ETF price trends
  • Calculating daily percentage returns
  • Return summary statistics
  • Correlation matrix (heatmap)
  • Distribution of returns
  • Cumulative return comparison
  • Identifying best-performing ETF

πŸ“ˆ Example Insights

(You can modify these after running the notebook.)

  • Highest-return ETF over the full period
  • Lowest volatility ETF
  • Strongest correlations between asset returns
  • ETF performance divergence over time

🧩 Purpose of This Project

This project is designed to showcase:

  • Python proficiency
  • Data analysis workflow
  • Time-series concepts
  • Visualization and reporting skills
  • Finance-oriented quantitative thinking

Perfect for use in:

  • CV / Resume Projects Section
  • Internship applications
  • Master’s programs (Finance, Analytics, IE, OR)

Visualizations

πŸ“Œ Author

Rahmi Berkay Alp
SabancΔ± University

About

A Python-based retail data analysis project using Pandas, NumPy, and visualization tools.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published